Solving x²-1/4 > 0: Finding Positive Domains of a Quadratic Function

Question

Find the positive and negative domains of the function:

y=x214 y=x^2-\frac{1}{4}

Determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To find when the function y=x214 y = x^2 - \frac{1}{4} is positive, we set up the inequality:
x214>0 x^2 - \frac{1}{4} > 0

First, solve the equation x214=0 x^2 - \frac{1}{4} = 0 :
x2=14 x^2 = \frac{1}{4}

Taking the square root of both sides, we get:

  • x=12 x = \frac{1}{2} or x=12 x = -\frac{1}{2}

These roots, x=12 x = \frac{1}{2} and x=12 x = -\frac{1}{2} , partition the real number line into three intervals: (,12) (-\infty, -\frac{1}{2}) , (12,12) (-\frac{1}{2}, \frac{1}{2}) , and (12,) (\frac{1}{2}, \infty) .

Now, we test each interval:

  • For x(,12) x \in (-\infty, -\frac{1}{2}) , choose x=1 x = -1 :
    x214=114=34>0 x^2 - \frac{1}{4} = 1 - \frac{1}{4} = \frac{3}{4} > 0
  • For x(12,12) x \in (-\frac{1}{2}, \frac{1}{2}) , choose x=0 x = 0 :
    x214=014=14<0 x^2 - \frac{1}{4} = 0 - \frac{1}{4} = -\frac{1}{4} < 0
  • For x(12,) x \in (\frac{1}{2}, \infty) , choose x=1 x = 1 :
    x214=114=34>0 x^2 - \frac{1}{4} = 1 - \frac{1}{4} = \frac{3}{4} > 0

Therefore, the function is positive in the intervals (,12) (-\infty, -\frac{1}{2}) and (12,) (\frac{1}{2}, \infty) .

Thus, the solution for the inequality x214>0 x^2 - \frac{1}{4} > 0 is:
x>12 x > \frac{1}{2} or x<12 x < -\frac{1}{2}

From the multiple-choice options, the correct answer is choice 3.

Answer

x > \frac{1}{2} or x < -\frac{1}{2}