According to which theorem are the triangles below similar?
What is their ratio of similarity?
We have hundreds of course questions with personalized recommendations + Account 100% premium
According to which theorem are the triangles below similar?
What is their ratio of similarity?
To determine which theorem proves the triangles are similar, we'll use the Angle-Angle (AA) Similarity Theorem:
Next, we calculate the ratio of similarity:
Therefore, according to the AA similarity theorem, the triangles are similar with the ratio of similarity .
The correct choice is:
AA,
AA,
Is the similarity ratio between the three triangles equal to one?
Look at the angle markings in the diagram! The vertices with equal angles correspond to each other. Then match sides by connecting corresponding vertices in order.
If two angles are equal, the third angle must also be equal (since angles in a triangle sum to 180°). So AA automatically gives us AAA!
Order matters! The ratio means side AB from triangle ABC corresponds to side ED from triangle DEF. Always keep the triangles in the same order.
Only if you have two proportional sides and the included angle equal. From the diagram, we can see equal angles, so AA is the most direct approach here.
Write it as keeping the same order for all ratios. If ABC~DEF, then .
Get unlimited access to all 18 Similar Triangles and Polygons questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime