Vertical Shift: Finding y=(x-2)² + 3 Through Function Transformation

Choose the equation that corresponds to the function

y=(x2)2 y=(x-2)^2

moved 3 spaces up.

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Express the new function
00:03 We'll use the formula to shift the function
00:07 We want to shift 3 units horizontally upward, so we'll increase K
00:17 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Choose the equation that corresponds to the function

y=(x2)2 y=(x-2)^2

moved 3 spaces up.

2

Step-by-step solution

To solve this problem, we need to apply a vertical shift to the function y=(x2)2 y = (x-2)^2 .

When a function y=f(x) y = f(x) is shifted vertically by a constant k k , the new function becomes y=f(x)+k y = f(x) + k . In this problem, we need to shift the function three units up.

Given the original function y=(x2)2 y = (x-2)^2 :

  • Step 1: Identify the kind of transformation. We aim to move the function 3 spaces up.
  • Step 2: Add 3 to the existing equation. This yields y=(x2)2+3 y = (x-2)^2 + 3 .

The updated equation represents the translated parabola after shifting 3 units upwards.

Comparing this result with the given multiple-choice options, the correct corresponding equation is:

y=(x2)2+3 y = (x-2)^2 + 3 .

3

Final Answer

y=(x2)2+3 y=(x-2)^2+3

Practice Quiz

Test your knowledge with interactive questions

Which equation represents the function:

\( y=x^2 \)

moved 2 spaces to the right

and 5 spaces upwards.

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Parabola Families questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations