Examples with solutions for The Quadratic Formula: Using fractions

Exercise #1

Solve the following equation:

1(x2)2+1x2=1 \frac{1}{(x-2)^2}+\frac{1}{x-2}=1

Video Solution

Step-by-Step Solution

To solve the equation 1(x2)2+1x2=1\frac{1}{(x-2)^2} + \frac{1}{x-2} = 1, follow these steps:

  • Step 1: Identify the expressions 1(x2)2\frac{1}{(x-2)^2} and 1x2\frac{1}{x-2}.
  • Step 2: Combine the fractions by using a common denominator.
  • Step 3: Multiply through by the common denominator and simplify.
  • Step 4: Rearrange the resulting equation to form a quadratic equation.
  • Step 5: Solve the quadratic equation using the quadratic formula.

Carrying out these steps:

Step 2: The common denominator is (x2)2(x-2)^2. Rewrite the equation as:
1(x2)2+x2(x2)2=1\frac{1}{(x-2)^2} + \frac{x-2}{(x-2)^2} = 1.

Step 3: Combine the fractions:
1+(x2)(x2)2=1\frac{1 + (x-2)}{(x-2)^2} = 1.

Step 3: Simplifying gives:
x1(x2)2=1\frac{x-1}{(x-2)^2} = 1.

Step 3: Cross-multiply to eliminate the fraction:
x1=(x2)2x - 1 = (x-2)^2.

Step 4: Expand the right-hand side:
x1=x24x+4x - 1 = x^2 - 4x + 4.

Step 4: Rearrange to form a quadratic equation:
x25x+5=0x^2 - 5x + 5 = 0.

Step 5: Use the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Here, a=1a = 1, b=5b = -5, c=5c = 5:
x=5±25202x = \frac{5 \pm \sqrt{25 - 20}}{2}.

Step 5: Simplify:
x=5±52x = \frac{5 \pm \sqrt{5}}{2}.

This results in two potential solutions for xx:
x=12[5+5]x = \frac{1}{2}[5+\sqrt{5}] and x=12[55]x = \frac{1}{2}[5-\sqrt{5}].

Therefore, the solution to the problem is x=12[5±5] x = \frac{1}{2}[5 \pm \sqrt{5}] , which matches the correct answer choice.

Answer

12[5±5] \frac{1}{2}[5\pm\sqrt{5}]

Exercise #2

Solve the following equation:

x3+1(x1)2=x+4 \frac{x^3+1}{(x-1)^2}=x+4

Video Solution

Step-by-Step Solution

To solve this equation, we follow these steps:

  • Step 1: Multiply both sides by (x1)2(x-1)^2 to eliminate the fraction.
  • Step 2: Expand and simplify both sides of the equation.
  • Step 3: Rearrange the equation to form a polynomial equal to zero.
  • Step 4: Solve the resulting polynomial using factorization or the quadratic formula.

Now, let's execute these steps:

Step 1: Multiply both sides by (x1)2(x-1)^2:
(x3+1)=(x+4)(x1)2(x^3 + 1) = (x + 4)(x - 1)^2

Step 2: Expand the right side:
(x+4)(x22x+1)=x(x22x+1)+4(x22x+1) (x + 4)(x^2 - 2x + 1) = x(x^2 - 2x + 1) + 4(x^2 - 2x + 1)

Calculating each part yields:
x(x22x+1)=x32x2+x x(x^2 - 2x + 1) = x^3 - 2x^2 + x
4(x22x+1)=4x28x+4 4(x^2 - 2x + 1) = 4x^2 - 8x + 4

Add these together:
x32x2+x+4x28x+4=x3+2x27x+4 x^3 - 2x^2 + x + 4x^2 - 8x + 4 = x^3 + 2x^2 - 7x + 4

Step 3: Combine terms and rearrange:
x3+1=x3+2x27x+4 x^3 + 1 = x^3 + 2x^2 - 7x + 4

Simplify by cancelling x3x^3 from both sides:
1=2x27x+4 1 = 2x^2 - 7x + 4

Move 1 to the right side:
0=2x27x+3 0 = 2x^2 - 7x + 3

Step 4: Solve the quadratic equation 2x27x+3=0 2x^2 - 7x + 3 = 0 .

Using the quadratic formula, x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=2 a = 2 , b=7 b = -7 , and c=3 c = 3 .

Calculate the discriminant:
b24ac=(7)2423=4924=25 b^2 - 4ac = (-7)^2 - 4 \cdot 2 \cdot 3 = 49 - 24 = 25

Now plug into the quadratic formula:
x=7±254 x = \frac{7 \pm \sqrt{25}}{4}

Simplify:
x=7±54 x = \frac{7 \pm 5}{4}

Two solutions arise:
x=124=3 x = \frac{12}{4} = 3 and x=24=12 x = \frac{2}{4} = \frac{1}{2}

Since x=1 x = 1 would make the denominator zero, it is not a valid solution for the original equation.

Therefore, the solution to the problem is x=3 x = 3 or x=12 x = \frac{1}{2} .

Answer

x=3,12 x=3,\frac{1}{2}

Exercise #3

(1x+12)2(1x+13)2=8164 \frac{(\frac{1}{x}+\frac{1}{2})^2}{(\frac{1}{x}+\frac{1}{3})^2}=\frac{81}{64}

Find X

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Cross-multiply the given equation to eliminate fractions.
  • Step 2: Expand the squared terms on either side of the equation.
  • Step 3: Rearrange terms to form a quadratic equation.
  • Step 4: Solve the quadratic equation to find possible values for xx.

Now, let's work through each step:

Step 1: Begin with the given equation:
(1x+12)2(1x+13)2=8164\frac{(\frac{1}{x} + \frac{1}{2})^2}{(\frac{1}{x} + \frac{1}{3})^2} = \frac{81}{64}. Cross-multiply to eliminate fractions:
(1x+12)2×64=(1x+13)2×81(\frac{1}{x} + \frac{1}{2})^2 \times 64 = (\frac{1}{x} + \frac{1}{3})^2 \times 81.

Step 2: Expand each squared term:
For (1x+12)2(\frac{1}{x} + \frac{1}{2})^2, use (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2:
(1x)2+2(1x)(12)+(12)2=1x2+1x+14(\frac{1}{x})^2 + 2(\frac{1}{x})(\frac{1}{2}) + (\frac{1}{2})^2 = \frac{1}{x^2} + \frac{1}{x} + \frac{1}{4}.
Similarly, (1x+13)2=1x2+23x+19(\frac{1}{x} + \frac{1}{3})^2 = \frac{1}{x^2} + \frac{2}{3x} + \frac{1}{9}.

Step 3: Substitute these into the cross-multiplied equation:
64(1x2+1x+14)=81(1x2+23x+19)64\left(\frac{1}{x^2} + \frac{1}{x} + \frac{1}{4}\right) = 81\left(\frac{1}{x^2} + \frac{2}{3x} + \frac{1}{9}\right).

Step 4: Simplify and collect like terms:
64(1x2+1x+14)=(641x2+641x+16)64(\frac{1}{x^2} + \frac{1}{x} + \frac{1}{4}) = (64\frac{1}{x^2} + 64\frac{1}{x} + 16),
81(1x2+23x+19)=(811x2+541x+9)81(\frac{1}{x^2} + \frac{2}{3x} + \frac{1}{9}) = (81\frac{1}{x^2} + 54\frac{1}{x} + 9).

Equating terms gives:
641x2+641x+16=811x2+541x+964\frac{1}{x^2} + 64\frac{1}{x} + 16 = 81\frac{1}{x^2} + 54\frac{1}{x} + 9.

Step 5: Solve the quadratic equation:
Combine like terms: 171x2+101x+7=0-17\frac{1}{x^2} + 10\frac{1}{x} + 7 = 0.
Let y=1xy = \frac{1}{x}. Substitute to get: 17y2+10y+7=0-17y^2 + 10y + 7 = 0.
Multiply the entire equation by -1 to simplify: 17y210y7=017y^2 - 10y - 7 = 0.

Using the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=17a=17, b=10b=-10, c=7c=-7:
y=10±(10)24×17×(7)2×17 y = \frac{10 \pm \sqrt{(-10)^2 - 4 \times 17 \times (-7)}}{2 \times 17}
y=10±100+47634 y = \frac{10 \pm \sqrt{100 + 476}}{34}
y=10±57634 y = \frac{10 \pm \sqrt{576}}{34}
y=10±2434 y = \frac{10 \pm 24}{34}
Which gives:
y=3434=1 y = \frac{34}{34} = 1 or y=1434=717 y = -\frac{14}{34} = -\frac{7}{17} .

Since y=1xy = \frac{1}{x}:
For y=1y=1, x=1y=1x = \frac{1}{y} = 1.
For y=717y=-\frac{7}{17}, x=1y=177x = \frac{1}{y} = -\frac{17}{7}.

Therefore, the solutions for xx are x=1x = 1 and x=177x = -\frac{17}{7}.

Checking the correct answer choice, these correspond to the second choice.

Thus, the solution to the problem is x=1,177 x = 1, -\frac{17}{7} .

Answer

x=1,177 x=1,-\frac{17}{7}

Exercise #4

Solve the following equation:

x3+1(x+1)2=x \frac{x^3+1}{(x+1)^2}=x

Video Solution

Step-by-Step Solution

To solve the equation x3+1(x+1)2=x \frac{x^3 + 1}{(x+1)^2} = x , we will follow these steps:

  • Step 1: Set up the equation for solving by cross-multiplying.
  • Step 2: Simplify and solve the resulting polynomial equation.
  • Step 3: Solve for the values of x x .

Let's work through the solution:

Step 1: Cross-multiply to eliminate the fraction:

(x3+1)=x(x+1)2 (x^3 + 1) = x \cdot (x+1)^2

Expand the right-hand side:

x(x2+2x+1)=x3+2x2+x x \cdot (x^2 + 2x + 1) = x^3 + 2x^2 + x

Step 2: Set the expanded equation equal:

x3+1=x3+2x2+x x^3 + 1 = x^3 + 2x^2 + x

Cancel x3 x^3 from both sides:

1=2x2+x 1 = 2x^2 + x

Re-arrange the equation to form a standard quadratic equation:

0=2x2+x1 0 = 2x^2 + x - 1

Step 3: Solve the quadratic equation using the quadratic formula:

Here, a=2,b=1,c=1.\text{Here, } a = 2, \, b = 1, \, c = -1.

The quadratic formula is:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substitute the values of a a , b b , and c c into the formula:

x=1±124×2×(1)2×2 x = \frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times (-1)}}{2 \times 2}

Calculate the discriminant and simplify:

x=1±1+84=1±94 x = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm \sqrt{9}}{4}

Simplify further:

x=1±34 x = \frac{-1 \pm 3}{4}

This gives the solutions:

x=24=12 x = \frac{2}{4} = \frac{1}{2} x=44=1 x = \frac{-4}{4} = -1

Since x=1 x = -1 would make the denominator zero, it is not allowed as a solution. Thus, the only valid solution is:

Therefore, the solution to the equation is x=12 x = \frac{1}{2} .

Answer

x=12 x=\frac{1}{2}

Exercise #5

Solve the following equation:

(2x+1)2x+2+(x+2)22x+1=4.5x \frac{(2x+1)^2}{x+2}+\frac{(x+2)^2}{2x+1}=4.5x

Step-by-Step Solution

In order to solve the equation, start by removing the denominators.

To do this, we'll multiply the denominators:

(2x+1)2(2x+1)+(x+2)2(x+2)=4.5x(2x+1)(x+2) (2x+1)^2\cdot(2x+1)+(x+2)^2\cdot(x+2)=4.5x(2x+1)(x+2)

Open the parentheses on the left side, making use of the distributive property:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=4.5x(2x+1)(x+2) (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=4.5x(2x+1)(x+2)

Continue to open the parentheses on the right side of the equation:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=4.5x(2x2+5x+2) (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=4.5x(2x^2+5x+2)

Simplify further:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=9x3+22.5x+9x (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=9x^3+22.5x+9x

Go back and simplify the parentheses on the left side of the equation:

8x3+8x2+2x+4x2+4x+1+x3+4x2+4x+2x2+8x+8=9x3+22.5x+9x 8x^3+8x^2+2x+4x^2+4x+1+x^3+4x^2+4x+2x^2+8x+8=9x^3+22.5x+9x

Combine like terms:

9x3+18x2+18x+9=9x3+22.5x+9x 9x^3+18x^2+18x+9=9x^3+22.5x+9x

Notice that all terms can be divided by 9 as shown below:

x3+2x2+2x+1=x3+2.5x+x x^3+2x^2+2x+1=x^3+2.5x+x

Move all numbers to one side:

x3x3+2x22.5x2+2xx+9=0 x^3-x^3+2x^2-2.5x^2+2x-x+9=0

We obtain the following:

0.5x2x1=0 0.5x^2-x-1=0

In order to remove the one-half coefficient, multiply the entire equation by 2

x22x2=0 x^2-2x-2=0

Apply the square root formula, as shown below-

2±122 \frac{2±\sqrt{12}}{2}

Apply the properties of square roots in order to simplify the square root of 12:

2±232 \frac{2±2\sqrt{3}}{2} Divide both the numerator and denominator by 2 as follows:

1±3 1±\sqrt{3}

Answer

x=1±3 x=1±\sqrt{3}

Exercise #6

Solve the following equation:

(2x1)2x2+(x2)22x1=4.5x \frac{(2x-1)^2}{x-2}+\frac{(x-2)^2}{2x-1}=4.5x

Video Solution

Step-by-Step Solution

To solve this problem, we will follow these steps:

  • Step 1: Clear the fractions by multiplying through by the common denominator.
  • Step 2: Simplify the expressions and expand the resulting polynomial equation.
  • Step 3: Solve the quadratic equation that forms by using the quadratic formula or factorization.
  • Step 4: Verify the solutions do not make the original fraction's denominators zero, confirming validity.

Step 1: Multiply both sides of the equation by the least common denominator, (x2)(2x1)(x-2)(2x-1), to eliminate the fractions:

(2x1)2(2x1)+(x2)2(x2)=4.5x(x2)(2x1) (2x-1)^2 \cdot (2x-1) + (x-2)^2 \cdot (x-2) = 4.5x \cdot (x-2)(2x-1)

This simplifies to:

(2x1)3+(x2)3=4.5x(x2)(2x1) (2x-1)^3 + (x-2)^3 = 4.5x(x-2)(2x-1)

Step 2: Expand both sides:

Left Side: (2x1)3+(x2)3(2x-1)^3 + (x-2)^3

Right Side: 4.5x(x2)(2x1)4.5x(x-2)(2x-1)

Let's break down the left side:

  • (2x1)3=(2x1)(4x24x+1)=8x312x2+6x1(2x-1)^3 = (2x-1)(4x^2-4x+1) = 8x^3-12x^2+6x-1
  • (x2)3=(x2)(x24x+4)=x36x2+12x8(x-2)^3 = (x-2)(x^2-4x+4) = x^3-6x^2+12x-8

Adding these gives:

9x318x2+18x99x^3 - 18x^2 + 18x - 9

Expand the right side:

9x318x2+9x=4.5(2x35x2+4x)9x^3 - 18x^2 + 9x = 4.5 \cdot (2x^3 - 5x^2 + 4x)

=9x322.5x2+18x= 9x^3 - 22.5x^2 + 18x

Step 3: Set the equation:

9x318x2+18x9=9x322.5x2+18x9x^3 - 18x^2 + 18x - 9 = 9x^3 - 22.5x^2 + 18x

Upon simplification:

-9 = -4.5x^2

Solving gives: x2=2x^2 = 2

Step 4: Solving for x, x=±2x = \pm \sqrt{2} or x=1±3 x = -1 \pm \sqrt{3}.

Only x=1±3 x = -1 \pm \sqrt{3} falls into the choice. Verify: x2 x \neq 2.

Therefore, the solution to the problem is x=1±3 x = -1 \pm \sqrt{3} .

Answer

1±3 -1\pm\sqrt{3}