What is a quadratic equation?

Quadratic equations (also called second degree equations) contain three numbers called parameters:

  • Parameter a a represents the position of the vertex of the parabola on the Y Y axis. A parabola can have a maximum vertex, or a minimum vertex (depending on if the parabola opens upwards or downwards).
  • Parameter b b represents the position of the vertex of the parabola on the X X axis.
  • Parameter c c represents the point of intersection of the parabola with the Y Y axis.

These three parameters are expressed in quadratic equations as follows:

aX2+bX+c=0 aX^2+bX+c=0

They are called the coefficients of the equation.

So, how do we find the value of X X ?

To find X X and be able to solve the quadratic equation, all we need to do is to input the parameters (the number values of a, b and c) from the equation into the quadratic formula, and solve for X X .

For example:

3X2+8X+4=0 3X^2+8X+4=0

Practice The Quadratic Formula

Examples with solutions for The Quadratic Formula

Exercise #1

a = coefficient of x²

b = coefficient of x

c = coefficient of the constant term


What is the value of c c in the function y=x2+25x y=-x^2+25x ?

Video Solution

Step-by-Step Solution

Let's recall the general form of the quadratic function:

y=ax2+bx+c y=ax^2+bx+c The function given in the problem is:

y=x2+25x y=-x^2+25x c c is the free term (meaning the coefficient of the term with power 0),

In the function in the problem there is no free term,

Therefore, we can identify that:

c=0 c=0 Therefore, the correct answer is answer A.

Answer

c=0 c=0

Exercise #2

Solve the following equation:

x2+5x+4=0 x^2+5x+4=0

Video Solution

Step-by-Step Solution

The parameters are expressed in the quadratic equation as follows:

aX2+bX+c=0

 

We substitute into the formula:

 

-5±√(5²-4*1*4) 
          2

 

-5±√(25-16)
         2

 

-5±√9
    2

 

-5±3
   2

 

The symbol ± means that we have to solve this part twice, once with a plus and a second time with a minus,

This is how we later get two results.

 

-5-3 = -8
-8/2 = -4

 

-5+3 = -2
-2/2 = -1

 

And thus we find out that X = -1, -4

Answer

x1=1 x_1=-1 x2=4 x_2=-4

Exercise #3

Solve the following equation:

2x210x12=0 2x^2-10x-12=0

Video Solution

Step-by-Step Solution

Let's recall the quadratic formula:

Quadratic formula | The formula

We'll substitute the given data into the formula:

x=(10)±10242(12)22 x={{-(-10)\pm\sqrt{-10^2-4\cdot2\cdot(-12)}\over 2\cdot2}}

Let's simplify and solve the part under the square root:

x=10±100+964 x={{10\pm\sqrt{100+96}\over 4}}

x=10±1964 x={{10\pm\sqrt{196}\over 4}}

x=10±144 x={{10\pm14\over 4}}

Now we'll solve using both methods, once with the addition sign and once with the subtraction sign:

x=10+144=244=6 x={{10+14\over 4}} = {24\over4}=6

x=10144=44=1 x={{10-14\over 4}} = {-4\over4}=-1

We've arrived at the solution: X=6,-1

Answer

x1=6 x_1=6 x2=1 x_2=-1

Exercise #4

x2+9=0 x^2+9=0

Solve the equation

Video Solution

Step-by-Step Solution

The parameters are expressed in the quadratic equation as follows:

aX2+bX+c=0

 

We identify that we have:
a=1
b=0
c=9

 

We recall the root formula:

Roots formula | The version

We replace according to the formula:

-0 ± √(0²-4*1*9)

           2

 

We will focus on the part inside the square root (also called delta)

√(0-4*1*9)

√(0-36)

√-36

 

It is not possible to take the square root of a negative number.

And so the question has no solution.

Answer

No solution

Exercise #5

Solve the following equation:

x2+9x+8=0 x^2+9x+8=0

Video Solution

Answer

x1=1 x_1=-1 x2=8 x_2=-8

Exercise #6

Solve the equation

3x239x90=0 3x^2-39x-90=0

Video Solution

Answer

x1=15 x_1=15 x2=2 x_2=-2

Exercise #7

Solve the following equation:

2x2+22x60=0 -2x^2+22x-60=0

Video Solution

Answer

x1=5 x_1=5 x2=6 x_2=6

Exercise #8

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number

Identifies a,b,c

5x2+6x8=0 5x^2+6x-8=0

Video Solution

Answer

a=5 a=5 b=6 b=6 c=8 c=-8

Exercise #9

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


8x25x+9=0 -8x^2-5x+9=0

What are the components of the equation?

Video Solution

Answer

a=8 a=-8 b=5 b=-5 c=9 c=9

Exercise #10

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


x2+4x5=0 x^2+4x-5=0

What are the components of the equation?

Video Solution

Answer

a=1 a=1 b=4 b=4 c=5 c=-5

Exercise #11

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


x22=0 -x^2-2=0

What are the components of the equation?

Video Solution

Answer

a=1 a=-1 b=0 b=0 c=2 c=-2

Exercise #12

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


x2+7x=0 x^2+7x=0

What are the components of the equation?

Video Solution

Answer

a=1 a=1 b=7 b=7 c=0 c=0

Exercise #13

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


10x2+5+20x=0 10x^2+5+20x=0

What are the components of the equation?

Video Solution

Answer

a=10 a=10 b=20 b=20 c=5 c=5

Exercise #14

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


56x2+12x=0 5-6x^2+12x=0

What are the components of the equation?

Video Solution

Answer

a=6 a=-6 b=12 b=12 c=5 c=5

Exercise #15

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


what is the value of c c in this quadratic equation:

y=5+3x2 y=5+3x^2

Video Solution

Answer

c=5 c=5

Topics learned in later sections

  1. Methods for Solving a Quadratic Function
  2. Squared Trinomial
  3. Completing the square in a quadratic equation