Solve for X:
Solve for X:
\( 5x=25 \)
Solve for X:
\( \frac{1}{3}x=9 \)
Solve for X:
\( 10+3x=19 \)
Solve for X:
\( 24-8x=-2x \)
Solve for X:
\( 33x-11x=66 \)
Solve for X:
To solve the equation , we will isolate using division:
After performing the division, we get:
Thus, the solution to the equation is .
5
Solve for X:
To solve the equation , we need to isolate the variable . To accomplish this, we can multiply both sides of the equation by 3, the reciprocal of .
Step-by-step solution:
Therefore, the solution to the equation is . This matches choice number 1 from the provided options.
27
Solve for X:
To solve the equation , follow these steps:
Therefore, the solution to the problem is .
3
Solve for X:
To solve the equation , we need to isolate . Follow these steps:
Therefore, the solution to the problem is .
4
Solve for X:
To solve the given linear equation , we will follow these steps:
Here's how we approach it:
Step 1: Combine like terms on the left-hand side of the equation.
We have . By combining these terms, we calculate:
.
Our equation now simplifies to .
Step 2: Isolate by dividing both sides of the equation by 22.
When we divide both sides of the equation by 22, we get:
.
By performing the division, we find .
Therefore, the value of that satisfies the equation is .
3
Solve for X:
\( -8x+3=-29 \)
Solve for X:
\( 3x-5=10 \)
Solve for X:
\( 6x=72 \)
Solve for X:
\( \frac{1}{5}x=12 \)
Solve the equation
\( 8x\cdot10=80 \)
Solve for X:
To solve the equation , we'll follow these steps:
Let's apply these steps:
Step 1: Subtract 3 from both sides:
This simplifies to:
Step 2: Divide both sides by to isolate :
This results in:
Therefore, the solution to the equation is , which corresponds to choice 4.
4
Solve for X:
To solve the equation , we follow these steps:
Therefore, the solution to the equation is .
5
Solve for X:
To solve for in the equation , follow these steps:
Step 1: Identify the equation and the coefficient of .
The given equation is , where the coefficient of is 6.
Step 2: Isolate by dividing both sides of the equation by the coefficient (6).
Perform the division: .
Step 3: Simplify the result.
Calculating , we get .
Therefore, the solution to the equation is .
12
Solve for X:
To solve this problem, we will follow the steps outlined below:
Let's proceed step-by-step:
Step 1: We have the equation .
Step 2: To isolate , multiply both sides of the equation by 5:
Step 3: Simplify both sides:
Therefore, the value of is .
Therefore, the solution to the problem is .
Solve the equation
To solve this linear equation, we need to isolate the variable . Here are the steps to follow:
This simplifies to:
This simplifies to:
Therefore, the solution to the equation is
.
Solve the equation
\( 5x-15=30 \)
Solve the equation
\( 20:4x=5 \)
\( 4x:30=2 \)
Solve for \( x \):
\( 5x \cdot 3 = 45 \)
Solve the equation
\( 7x+5.5=19.5 \)
Solve the equation
We start by moving the sections:
5X-15 = 30
5X = 30+15
5X = 45
Now we divide by 5
X = 9
Solve the equation
To solve the exercise, we first rewrite the entire division as a fraction:
Actually, we didn't have to do this step, but it's more convenient for the rest of the process.
To get rid of the fraction, we multiply both sides of the equation by the denominator, 4X.
20=5*4X
20=20X
Now we can reduce both sides of the equation by 20 and we will arrive at the result of:
X=1
To solve the given equation , we will follow these steps:
Step 1: Recognize that implies .
Step 2: Eliminate the fraction by multiplying both sides of the equation by 30.
Step 3: Simplify the equation to solve for .
Now, let's work through each step:
Step 1: The equation is written as .
Step 2: Multiply both sides of the equation by 30 to eliminate the fraction:
This simplifies to:
Step 3: Solve for by dividing both sides by 4:
Therefore, the solution to the problem is .
Checking choices, the correct answer is:
Solve for :
To solve the equation, follow these steps:
1. First, identify the operation needed to solve for. In this case, we have a multiplication equation.
2. Therefore, we divide both sides of the equation by 15 (since ) to isolate :
3. Calculate :
Solve the equation
To solve the given equation , we'll follow these steps:
Now, let's work through each step:
Step 1: Subtract 5.5 from both sides.
We have:
This simplifies to:
Step 2: Divide both sides by 7 to solve for .
So, we divide by 7:
This simplifies to:
Therefore, the solution to the problem is .
Solve the equation:
\( 6x \cdot 2 = 24 \)
Solve for X:
\( \frac{2}{8}x-3=7 \)
Solve for X:
\( \frac{1}{5}x-4=6 \)
Find the value of the parameter X
\( x+3-8x=4+3-x \)
Solve for X:
\( -5x+20-3x=40+2-6x \)
Solve the equation:
To solve the equation , follow these steps:
1. First, identify the operation involved. In this case, it is multiplication.
2. Divide both sides of the equation by 12 (since ) to isolate :
3. Calculate :
Solve for X:
To solve the equation , we'll follow these steps:
Let's solve the equation step-by-step:
Step 1: Simplify the equation:
The equation simplifies to .
Step 2: Eliminate the constant term:
Add 3 to both sides to isolate the term involving :
This simplifies to:
Step 3: Solve for :
Multiply both sides by the reciprocal of to solve for :
This simplifies to:
Therefore, the solution to the equation is .
40
Solve for X:
To solve the equation , we will follow these steps:
Let's apply these steps to solve the equation:
Step 1: Add 4 to both sides:
This simplifies to:
Step 2: Multiply both sides by 5 to solve for :
This simplifies to:
Therefore, the solution to the equation is .
50
Find the value of the parameter X
To solve this problem, we'll follow the procedure of simplifying and solving for :
Now, let's work through each step:
Step 1: Simplify both sides of the equation.
The given equation is .
Combine like terms on each side:
Left side:
Right side:
So the equation becomes: .
Step 2: Get all terms involving on one side of the equation.
Add to both sides to combine the terms:
Simplifies to:
Step 3: Solve for .
Subtract 3 from both sides to isolate terms involving :
Now, divide both sides by to solve for :
Therefore, the solution to the problem is .
Solve for X:
To solve for , let's follow these steps:
Let's begin with the left side of the equation:
simplifies to .
Next, the right side of the equation:
simplifies to .
The equation now is:
.
Step 2: Move all terms containing to one side and constant terms to the other:
First, add to both sides to move the terms together:
which simplifies to .
Next, subtract from both sides to get:
which simplifies to .
Step 3: Solve for by dividing both sides by 2:
.
Therefore, the solution to the problem is .