Solve the Fraction Equation: Finding X in (2/3)x + 1/4 = 3/4

Linear Equations with Mixed Fractions

Find the value of the parameter X

23x+14=34 \frac{2}{3}x+\frac{1}{4}=\frac{3}{4}

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Solve
00:03 We want to isolate the unknown X
00:08 Let's arrange the equation so that one side has only the unknown X
00:18 Let's simplify what we can
00:24 Let's write as a single fraction
00:32 Let's isolate the unknown X and calculate
00:36 Let's multiply by the reciprocal fraction to eliminate the fraction
00:47 Let's simplify what we can
00:51 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Find the value of the parameter X

23x+14=34 \frac{2}{3}x+\frac{1}{4}=\frac{3}{4}

2

Step-by-step solution

Let's proceed with solving the equation step by step:

  1. Start with the equation 23x+14=34 \frac{2}{3}x + \frac{1}{4} = \frac{3}{4} .

  2. Subtract 14 \frac{1}{4} from both sides to remove the constant term on the left:
    23x+1414=3414 \frac{2}{3}x + \frac{1}{4} - \frac{1}{4} = \frac{3}{4} - \frac{1}{4} .

  3. This simplifies to: 23x=3414 \frac{2}{3}x = \frac{3}{4} - \frac{1}{4} .

  4. Perform the subtraction on the right-hand side:
    23x=24=12 \frac{2}{3}x = \frac{2}{4} = \frac{1}{2} .

  5. Now solve for x x by dividing both sides of the equation by 23 \frac{2}{3} :
    x=12÷23 x = \frac{1}{2} \div \frac{2}{3} .

  6. Dividing by a fraction is the same as multiplying by its reciprocal:
    x=12×32 x = \frac{1}{2} \times \frac{3}{2} .

  7. Simplify the multiplication:
    x=34 x = \frac{3}{4} .

Therefore, the value of the parameter x x is 34\frac{3}{4}.

3

Final Answer

34 \frac{3}{4}

Key Points to Remember

Essential concepts to master this topic
  • Isolation: Subtract constant terms first to isolate variable term
  • Technique: Divide by coefficient: 12÷23=12×32=34 \frac{1}{2} \div \frac{2}{3} = \frac{1}{2} \times \frac{3}{2} = \frac{3}{4}
  • Check: Substitute back: 23×34+14=12+14=34 \frac{2}{3} \times \frac{3}{4} + \frac{1}{4} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}

Common Mistakes

Avoid these frequent errors
  • Adding or subtracting fractions incorrectly
    Don't compute 3414=20 \frac{3}{4} - \frac{1}{4} = \frac{2}{0} by subtracting denominators! This creates undefined expressions. Always keep the same denominator when fractions have common denominators: 3414=24=12 \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} .

Practice Quiz

Test your knowledge with interactive questions

Solve for X:

\( x - 3 + 5 = 8 - 2 \)

FAQ

Everything you need to know about this question

Why do I subtract 1/4 from both sides first?

+

We want to isolate the term with x by getting rid of constants. Subtracting 14 \frac{1}{4} from both sides removes it from the left side, leaving just 23x \frac{2}{3}x .

How do I divide by a fraction like 2/3?

+

Dividing by a fraction is the same as multiplying by its reciprocal. So ÷23 \div \frac{2}{3} becomes ×32 \times \frac{3}{2} . Flip the fraction and multiply!

What's the easiest way to subtract fractions with the same denominator?

+

When denominators are the same, just subtract the numerators and keep the denominator: 3414=314=24=12 \frac{3}{4} - \frac{1}{4} = \frac{3-1}{4} = \frac{2}{4} = \frac{1}{2} .

How can I check if x = 3/4 is correct?

+

Substitute x=34 x = \frac{3}{4} back into the original equation: 23×34+14=612+312=912=34 \frac{2}{3} \times \frac{3}{4} + \frac{1}{4} = \frac{6}{12} + \frac{3}{12} = \frac{9}{12} = \frac{3}{4}

Can I convert everything to decimals instead?

+

Yes, but fractions are often more precise for this type of problem. Converting 23 \frac{2}{3} to 0.667 creates rounding errors that make checking harder.

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Linear Equations (One Variable) questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations