Calculate Parallelogram Area Using 4:7 Ratio: Height = 8 Units

Question

Shown below is the parallelogram ABCD.

The ratio between AE and DC is 4:7.

Calculate the area of the parallelogram ABCD.

888AAABBBCCCDDDEEE

Video Solution

Solution Steps

00:00 Find the parallelogram area
00:06 Height to side ratio according to given data
00:14 Multiply by DC to eliminate the fraction
00:21 Multiply by reciprocal to eliminate the fraction
00:35 Set AE value according to given data
00:48 This is DC's size
00:51 Now we'll use the formula to calculate parallelogram area
00:54 Side(DC) multiplied by height(AE)
00:58 Insert appropriate values and solve to find the area
01:02 And this is the solution to the problem

Step-by-Step Solution

To find the area of the parallelogram ABCD, follow these steps:

  • Step 1: Assume AE=4x AE = 4x and DC=7x DC = 7x . The ratio between AE and DC is given as 4:7.

  • Step 2: GivenAE=8 AE = 8 cm, we can write: 4x=8 4x = 8 . Solve for x: x=2 x = 2 cm.

  • Step 3: Substitute x=2 x = 2 into DC=7x DC = 7x to find DC: DC=7×2=14 \text{DC} = 7 \times 2 = 14 cm.

  • Step 4: The area of the parallelogram is given by base × \times height. Here, base DC=14 DC = 14 cm and height AE=8 AE = 8 cm, so the area is: Area=14×8=112 cm2.\text{Area} = 14 \times 8 = 112 \text{ cm}^2.

Thus, the area of the parallelogram ABCD is 112 112 cm².

Answer

112 112 cm².