Determine Critical Values for y = 3x² - 6x + 4: When is f(x) < 0?

Look at the following function:

y=3x26x+4 y=3x^2-6x+4

Determine for which values of x x the following is true:

f(x)<0 f(x) < 0

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Look at the following function:

y=3x26x+4 y=3x^2-6x+4

Determine for which values of x x the following is true:

f(x)<0 f(x) < 0

2

Step-by-step solution

Let's analyze the function y=3x26x+4 y = 3x^2 - 6x + 4 to determine when it is negative.

First, calculate the discriminant Δ\Delta:

Δ=(6)2434=3648=12 \Delta = (-6)^2 - 4 \cdot 3 \cdot 4 = 36 - 48 = -12

A negative discriminant (Δ<0\Delta < 0) indicates that there are no real roots, meaning the graph of the function does not intersect the x-axis. Since a=3>0 a = 3 > 0 , the parabola opens upwards.

This means the vertex of the parabola represents the minimum point, and the entire graph is above the x-axis.

Consequently, the function y=3x26x+4 y = 3x^2 - 6x + 4 does not attain any negative values for any real x x .

The correct interpretation is that the function stays positive, confirming the conclusion:

The function has no negative values.

3

Final Answer

The function has no negative values.

Practice Quiz

Test your knowledge with interactive questions

The graph of the function below intersects the X-axis at points A and B.

The vertex of the parabola is marked at point C.

Find all values of \( x \) where \( f\left(x\right) > 0 \).

AAABBBCCCX

🌟 Unlock Your Math Potential

Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations