Determine X Values for Positive Outputs in y=-x²-5x

Question

Look at the following function:

y=x25x y=-x^2-5x

Determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To determine for which values of x x the quadratic function is positive, follow these steps:

  • Step 1: Set the quadratic equation to zero: x25x=0 -x^2 - 5x = 0 .
  • Step 2: Factor the equation: x(x+5)=0 -x(x + 5) = 0 .
  • Step 3: Solve for the roots: x=0 x = 0 and x=5 x = -5 .
  • Step 4: Determine the intervals defined by the roots: (,5) (-\infty, -5) , (5,0) (-5, 0) , and (0,) (0, \infty) .
  • Step 5: Test each interval:
    • For interval (,5) (-\infty, -5) , choose x=6 x = -6 : (6)25(6)=36+30=6 -(-6)^2 - 5(-6) = -36 + 30 = -6 (negative).
    • For interval (5,0) (-5, 0) , choose x=1 x = -1 : (1)25(1)=1+5=4 -(-1)^2 - 5(-1) = -1 + 5 = 4 (positive).
    • For interval (0,) (0, \infty) , choose x=1 x = 1 : (1)25(1)=15=6 -(1)^2 - 5(1) = -1 - 5 = -6 (negative).
  • Step 6: The function is positive in the interval (5,0) (-5, 0) .

Thus, the solution to the inequality f(x)>0 f(x) > 0 is 5<x<0 -5 < x < 0 .

Answer

-5 < x < 0