Domain Analysis of y = -1/2x² + 18: Finding Valid Inputs

Question

Find the positive and negative domains of the function:

y=12x2+18 y=-\frac{1}{2}x^2+18

Step-by-Step Solution

To find the positive and negative domains of the function y=12x2+18 y = -\frac{1}{2}x^2 + 18 , we'll follow these steps:

  • Step 1: Set the function equal to zero to find roots using the quadratic equation.
  • Step 2: Solve for x x using the quadratic formula.
  • Step 3: Identify intervals determined by the roots.
  • Step 4: Test intervals to determine where the function is positive or negative.

Step 1: Set the equation to zero:
12x2+18=0 -\frac{1}{2}x^2 + 18 = 0

Step 2: Solve for x x using the quadratic formula:
x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Here, a=12 a = -\frac{1}{2} , b=0 b = 0 , and c=18 c = 18 .

Substitute the values into the quadratic formula:
x=0±024(12)(18)2(12) x = \frac{-0 \pm \sqrt{0^2 - 4(-\frac{1}{2})(18)}}{2(-\frac{1}{2})}
x=±361 x = \frac{\pm \sqrt{36}}{-1}
x=±61 x = \frac{\pm 6}{-1}

So, the roots are x=6 x = -6 and x=6 x = 6 .

Step 3: The roots divide the x-axis into intervals: (,6) (-\infty, -6) , (6,6) (-6, 6) , and (6,) (6, \infty) .

Step 4: Test points in each interval to determine the sign of y y :
For (,6) (-\infty, -6) and (6,) (6, \infty) , choose test points like x=7 x = -7 and x=7 x = 7 .
Both yield negative values for y y since the parabola opens downwards.
For (6,6) (-6, 6) , test with x=0 x = 0 :
y=12(0)2+18=18 y = -\frac{1}{2}(0)^2 + 18 = 18 (positive).

Thus, the function is positive for 6<x<6 -6 < x < 6 and negative for x>6 x > 6 or x<6 x < -6 .

The correct answer is the interval: x>6 x > 6 or x<0:x<6 x < 0 : x < -6

The function is positive for \( x > 0 : -6 < x < 6

Answer

x > 6 or x < 0 : x < -6

x > 0 : -6< x < 6