Domain Analysis: Find Valid Inputs for y = -1/2x² + 2.347

Question

Find the positive and negative domains of the following function:

y=12x2+22572 y=-\frac{1}{2}x^2+2\frac{25}{72}

Step-by-Step Solution

The given function is y=12x2+22572 y = -\frac{1}{2}x^2 + 2\frac{25}{72} . We need to find when this function is equal to zero to determine the positive and negative domains.

First, identify the coefficients from the function:

  • a=12 a = -\frac{1}{2} , b=0 b = 0 , c=22572 c = 2\frac{25}{72} which we convert to improper fraction: 16972 \frac{169}{72} .

We then use the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} to find the roots.

Substituting in our values:

x=0±04(12)(16972)1 x = \frac{-0 \pm \sqrt{0 - 4\left(-\frac{1}{2}\right)\left(\frac{169}{72}\right)}}{-1} .

The discriminant calculation is as follows:

41216972=16936 4 \cdot \frac{1}{2} \cdot \frac{169}{72} = \frac{169}{36} .

So our roots are:

x=±16936=±136=±216 x = \pm \sqrt{\frac{169}{36}} = \pm \frac{13}{6} = \pm 2\frac{1}{6} .

The roots are x=216 x = 2\frac{1}{6} and x=216 x = -2\frac{1}{6} . These divide the x-axis into intervals to be tested.

- When x<216 x < -2\frac{1}{6} , test point x=3 x = -3 :
y=12(3)2+16972<0 y = -\frac{1}{2}(3)^2 + \frac{169}{72} < 0 : Negative.
Hence, x<216 x < -2\frac{1}{6} gives negative values.

- When 216<x<216 -2\frac{1}{6} < x < 2\frac{1}{6} , test x=0 x = 0 :
y=12(0)2+16972>0 y = -\frac{1}{2}(0)^2 + \frac{169}{72} > 0 : Positive.
Hence, 216<x<216 -2\frac{1}{6} < x < 2\frac{1}{6} gives positive values.

- When x>216 x > 2\frac{1}{6} , test point x=3 x = 3 :
y=12(3)2+16972<0 y = -\frac{1}{2}(3)^2 + \frac{169}{72} < 0 : Negative.
Hence, x>216 x > 2\frac{1}{6} gives negative values.

Therefore, the positive domain is x>0:216<x<216 x > 0 : -2\frac{1}{6} < x < 2\frac{1}{6} and the negative domain is x<0:x<216 x < 0 : x < -2\frac{1}{6} or x>216 x > 2\frac{1}{6} .

In comparing to the provided choices, the correct choice is Choice 2: x>216 x > 2\frac{1}{6} or x<0:x<216 x < 0 : x < -2\frac{1}{6}

x>0:216<x<216 x > 0 : - 2\frac{1}{6} < x < 2\frac{1}{6}

Answer

x > 2\frac{1}{6} or x < 0 : x < -2\frac{1}{6}

x > 0 : - 2\frac{1}{6} < x < 2\frac{1}{6}