Domain Analysis of y = (1/4)x² - 4/5: Finding Valid Inputs

Question

Find the positive and negative domains of the function below:

y=14x245 y=\frac{1}{4}x^2-\frac{4}{5}

Step-by-Step Solution

To determine where the function y=14x245 y = \frac{1}{4}x^2 - \frac{4}{5} is positive or negative, we start by finding the roots of the function. These roots occur where

14x245=0 \frac{1}{4}x^2 - \frac{4}{5} = 0 .

Multiply through by 4 to clear the fraction:

x2=165 x^2 = \frac{16}{5} .

Take the square root of both sides:

x=±165 x = \pm \sqrt{\frac{16}{5}} .

This simplifies to:

x=±45 x = \pm \frac{4}{\sqrt{5}} .

With roots at x=45 x = \frac{4}{\sqrt{5}} and x=45 x = -\frac{4}{\sqrt{5}} , the x-axis is divided into three intervals:

  • x<45 x < -\frac{4}{\sqrt{5}} ,
  • 45<x<45 -\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}} ,
  • x>45 x > \frac{4}{\sqrt{5}} .

Analyze these intervals:

  • Choose a test point x=0 x = 0 in 45<x<45 -\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}} :
  • y(0)=14(0)245=45<0 y(0) = \frac{1}{4}(0)^2 - \frac{4}{5} = -\frac{4}{5} < 0. Thus, the function is negative in 45<x<45-\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}} .
  • Choose a test point x=2 x = -2 in x<45 x < -\frac{4}{\sqrt{5}} :
  • y(2)=14(2)245=145=15>0 y(-2) = \frac{1}{4}(-2)^2 - \frac{4}{5} = 1 - \frac{4}{5} = \frac{1}{5} > 0. Thus, the function is positive in x<45 x < -\frac{4}{\sqrt{5}} .
  • Choose a test point x=2 x = 2 in x>45 x > \frac{4}{\sqrt{5}} :
  • y(2)=14(2)245=145=15>0 y(2) = \frac{1}{4}(2)^2 - \frac{4}{5} = 1 - \frac{4}{5} = \frac{1}{5} > 0. Thus, the function is positive in x>45 x > \frac{4}{\sqrt{5}} .

Therefore, the negative domain is 45<x<45 -\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}} , and the positive domains are x<45 x < -\frac{4}{\sqrt{5}} or x>45 x > \frac{4}{\sqrt{5}} .

The correct choice based on this analysis is:

Choice 3: x<0:45<x<45 x < 0 : -\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}}

and

x>0:x<45 x > 0 : x < -\frac{4}{\sqrt{5}} or x>45 x > \frac{4}{\sqrt{5}}

Answer

x < 0 :-\frac{4}{\sqrt{5}} < x < \frac{4}{\sqrt{5}}

x > \frac{4}{\sqrt{5}} or x > 0 : x < -\frac{4}{\sqrt{5}}