Find Positive and Negative Domains of y = (1/3)x² - 2: Domain Analysis

Question

Find the positive and negative domains of the function below:

y=13x22 y=\frac{1}{3}x^2-2

Step-by-Step Solution

To solve the problem, we will determine the positive and negative domains of the quadratic function y=13x22 y = \frac{1}{3}x^2 - 2 by following these steps:

  • Step 1: Find the roots of the quadratic function to identify the intervals.

  • Step 2: Analyze the sign of the function in each interval determined by the roots.

Step 1: Finding the Roots
To find the roots, set y=0 y = 0 in the equation:
13x22=0 \frac{1}{3}x^2 - 2 = 0 .
Multiply through by 3 to eliminate the fraction:
x26=0 x^2 - 6 = 0 .
Rearranging gives:
x2=6 x^2 = 6 .
The solutions to this equation are the roots x=±6 x = \pm \sqrt{6} .

Step 2: Analyze Sign in Each Interval
The roots x=6 x = -\sqrt{6} and x=6 x = \sqrt{6} split the real number line into three intervals: (,6) (-\infty, -\sqrt{6}) , (6,6) (-\sqrt{6}, \sqrt{6}) , (6,) (\sqrt{6}, \infty) .
For each interval, choose a test point and determine the sign of y y .

- Interval (,6) (-\infty, -\sqrt{6}) : Choose x=3 x = -3 (since 3<62.45 -3 \lt -\sqrt{6} \approx -2.45 ).
y = \frac{1}{3}(-3)^2 - 2 = \frac{9}{3} - 2 = 3 - 2 = 1 > 0 .
Thus, y > 0 in the interval (,6) (-\infty, -\sqrt{6}) .

- Interval (6,6) (-\sqrt{6}, \sqrt{6}) : Choose x=0 x = 0 .
y = \frac{1}{3}(0)^2 - 2 = -2 < 0 .
Thus, y < 0 in the interval (6,6) (-\sqrt{6}, \sqrt{6}) .

- Interval (6,) (\sqrt{6}, \infty) : Choose x=3 x = 3 (since 3>62.45 3 \gt \sqrt{6} \approx 2.45 ).
y = \frac{1}{3}(3)^2 - 2 = \frac{9}{3} - 2 = 3 - 2 = 1 > 0 .
Thus, y > 0 in the interval (6,) (\sqrt{6}, \infty) .

Therefore, the positive domain is given by the intervals x < -\sqrt{6} and x > \sqrt{6} , while the negative domain is -\sqrt{6} < x < \sqrt{6} .

Thus, the positive and negative domains of the function are:

- Positive: x < -\sqrt{6} or x > \sqrt{6}

- Negative: -\sqrt{6} < x < \sqrt{6}

These match the correct answer choice as follows:

x < 0 : -\sqrt{6} < x < \sqrt{6}

x > \sqrt{6} or x> 0 : x <-\sqrt{6}

Answer

x < 0 : -\sqrt{6} < x < \sqrt{6}

x > \sqrt{6} or x> 0 : x <-\sqrt{6}