Domain Analysis: Finding Valid Inputs for y = (1/6)x² - 5

Question

Find the positive and negative domains of the function below:

y=16x25 y=\frac{1}{6}x^2-5

Step-by-Step Solution

We begin by finding the roots of the function y=16x25 y = \frac{1}{6}x^2 - 5 by setting it to zero:

16x25=0\frac{1}{6}x^2 - 5 = 0

Multiply through by 6 to clear the fraction:

x230=0x^2 - 30 = 0

Solve for x2=30 x^2 = 30 , giving:

x=±30x = \pm \sqrt{30}

Now, we analyze the intervals determined by these roots:

  • For x(,30) x \in (-\infty, -\sqrt{30}) , since the parabola opens upwards, y y is positive.
  • For x(30,30) x \in (-\sqrt{30}, \sqrt{30}) , the parabola dips below the x-axis, so y y is negative.
  • For x(30,) x \in (\sqrt{30}, \infty) , the parabola returns above the x-axis, making y y positive.

Therefore, the function is negative in the interval 30<x<30-\sqrt{30} < x < \sqrt{30}, and positive in the interval x<30x < -\sqrt{30} or x>30x > \sqrt{30}.

This gives us the positive and negative domains:

x < 0 : -\sqrt{30} < x < \sqrt{30}

x > \sqrt{30} or x > 0 : x < -\sqrt{30}

Answer

x < 0 : -\sqrt{30} < x < \sqrt{30}

x > \sqrt{30} or x > 0 : x < -\sqrt{30}