Find the domain of decrease of the function:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Find the domain of decrease of the function:
To determine the domain over which the quadratic function is decreasing, we proceed by identifying the vertex of the parabola.
Given the form , we have , , and . The x-coordinate of the vertex can be found using the formula:
Substituting and into the formula, we calculate:
The vertex of the parabola occurs at . Since the function is a downward-opening parabola (as indicated by the negative coefficient of ), the function decreases for all values greater than the x-coordinate of the vertex.
Therefore, the domain of decrease for the function is .
This matches the answer choice:
Note that the graph of the function below does not intersect the x-axis
Moreover the parabola's vertex is A
Identify the interval where the function is increasing:
Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime