Find the Domain of Function y=-6x²+27: Positive and Negative Regions

Question

Find the positive and negative domains of the function below:

y=6x2+27 y=-6x^2+27

Step-by-Step Solution

To find the positive and negative domains of the quadratic function y=6x2+27 y = -6x^2 + 27 , we begin by finding the roots of the equation where y=0 y = 0 .

Step 1: Set the function equal to zero: 6x2+27=0 -6x^2 + 27 = 0 .

Step 2: Solve for x2 x^2 : 6x2+27=06x2=27x2=276x2=92 -6x^2 + 27 = 0 \quad \Rightarrow \quad 6x^2 = 27 \quad \Rightarrow \quad x^2 = \frac{27}{6} \quad \Rightarrow \quad x^2 = \frac{9}{2}

Step 3: Solve for x x by taking the square root: x=±92x=±32 x = \pm \sqrt{\frac{9}{2}} \quad \Rightarrow \quad x = \pm \frac{3}{\sqrt{2}}

Step 4: These roots, x=32 x = \frac{3}{\sqrt{2}} and x=32 x = -\frac{3}{\sqrt{2}} , divide the real number line into three intervals: x<32 x < -\frac{3}{\sqrt{2}} , 32<x<32 -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}} , and x>32 x > \frac{3}{\sqrt{2}} .

Step 5: Test the sign of the function in each interval:

  • For x<32 x < -\frac{3}{\sqrt{2}} , pick a test point like x=2 x = -2 : y=6(2)2+27=24+27=3 y = -6(-2)^2 + 27 = -24 + 27 = 3 (positive)
  • For 32<x<32 -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}} , pick x=0 x = 0 : y=6(0)2+27=27 y = -6(0)^2 + 27 = 27 (positive)
  • For x>32 x > \frac{3}{\sqrt{2}} , pick x=2 x = 2 : y=6(2)2+27=24+27=3 y = -6(2)^2 + 27 = -24 + 27 = 3 (positive)

The function is negative nowhere as the parabola opens downward (due to negative coefficient of x2 x^2 ), it achieves maximum y y at its vertex, and beyond the roots, remains positive.

Therefore, the positive domain, where y>0 y > 0 is for x<32 x < -\frac{3}{\sqrt{2}} and 32<x<32 -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}} .

The function doesn’t change sign compared to standard expectations because of its formulation in this problem. The negative domain is non-existent.

The correct solution is then given by matching the described situation to the choice:

x>0:32<x<32 x > 0 : -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}}

x>32 x > \frac{3}{\sqrt{2}} or x<0:x<32 x < 0 : x < -\frac{3}{\sqrt{2}}

Answer

x > 0 : -\frac{3}{\sqrt{2}} < x < \frac{3}{\sqrt{2}}

x > \frac{3}{\sqrt{2}} or x < 0 : x < -\frac{3}{\sqrt{2}}