Find Domains of y=-3x²+13: Analyzing a Quadratic Function

Question

Find the positive and negative domains of the function below:

y=3x2+13 y=-3x^2+13

Step-by-Step Solution

To solve this problem, we first determine where the quadratic function y=3x2+13 y = -3x^2 + 13 is equal to zero. Setting 3x2+13=0 -3x^2 + 13 = 0 yields:

  • Rearrange the equation: 3x2=13 -3x^2 = -13 , leading to x2=133 x^2 = \frac{13}{3} .

  • Solve for x x : x=±133 x = \pm \sqrt{\frac{13}{3}} .

The roots of the equation are x=133 x = \sqrt{\frac{13}{3}} and x=133 x = -\sqrt{\frac{13}{3}} . These roots divide the number line into three intervals: x<133 x < -\sqrt{\frac{13}{3}} , 133<x<133 -\sqrt{\frac{13}{3}} < x < \sqrt{\frac{13}{3}} , and x>133 x > \sqrt{\frac{13}{3}} .

Determine the sign of the function in each interval:

  • For x<133 x < -\sqrt{\frac{13}{3}} , select a test point (e.g., x=3 x = -3 ), the function value is negative because 3(32)+13=27+13=14-3(-3^2) + 13 = -27 + 13 = -14.

  • For 133<x<133 -\sqrt{\frac{13}{3}} < x < \sqrt{\frac{13}{3}} , select a test point (e.g., x=0 x = 0 ), the function value is positive because 3(0)2+13=13-3(0)^2 + 13 = 13.

  • For x>133 x > \sqrt{\frac{13}{3}} , select a test point (e.g., x=3 x = 3 ), the function value is negative because 3(32)+13=27+13=14-3(3^2) + 13 = -27 + 13 = -14.

Therefore, the positive domain of the function is 133<x<133 -\sqrt{\frac{13}{3}} < x < \sqrt{\frac{13}{3}} , and the negative domain is x<133 x < -\sqrt{\frac{13}{3}} or x>133 x > \sqrt{\frac{13}{3}} .

The answer matches choice 3:

x>133 x > \sqrt{\frac{13}{3}} or x<0:x<133 x < 0 : x < -\sqrt{\frac{13}{3}}

x>0:133<x<133 x > 0 : -\sqrt{\frac{13}{3}} < x < \sqrt{\frac{13}{3}}

Answer

x > \sqrt{\frac{13}{3}} or x < 0 : x < -\sqrt{\frac{13}{3}}

x > 0 : -\sqrt{\frac{13}{3}} < x < \sqrt{\frac{13}{3}}