Find the positive and negative domains of the function below:
y=−3x2+13
To solve this problem, we first determine where the quadratic function y=−3x2+13 is equal to zero. Setting −3x2+13=0 yields:
Rearrange the equation: −3x2=−13, leading to x2=313.
Solve for x: x=±313.
The roots of the equation are x=313 and x=−313. These roots divide the number line into three intervals: x<−313, −313<x<313, and x>313.
Determine the sign of the function in each interval:
For x<−313, select a test point (e.g., x=−3), the function value is negative because −3(−32)+13=−27+13=−14.
For −313<x<313, select a test point (e.g., x=0), the function value is positive because −3(0)2+13=13.
For x>313, select a test point (e.g., x=3), the function value is negative because −3(32)+13=−27+13=−14.
Therefore, the positive domain of the function is −313<x<313, and the negative domain is x<−313 or x>313.
The answer matches choice 3:
x>313 or x<0:x<−313
x>0:−313<x<313
x > \sqrt{\frac{13}{3}} or x < 0 : x < -\sqrt{\frac{13}{3}}
x > 0 : -\sqrt{\frac{13}{3}} < x < \sqrt{\frac{13}{3}}