Find the Domain Regions of y=-4x²+6: Complete Function Analysis

Question

Find the positive and negative domains of the function below:

y=4x2+6 y=-4x^2+6

Step-by-Step Solution

To solve the problem, we will find where the quadratic function y=4x2+6 y = -4x^2 + 6 is equal to zero.

Set the equation to zero to find the roots:

4x2+6=0 -4x^2 + 6 = 0

4x2=6 -4x^2 = -6

x2=64 x^2 = \frac{6}{4}

x2=32 x^2 = \frac{3}{2}

Take the square root of both sides:

x=±32 x = \pm \sqrt{\frac{3}{2}}

x=±62 x = \pm \frac{\sqrt{6}}{2} (since 32=62\sqrt{\frac{3}{2}} = \frac{\sqrt{6}}{2} )

Now identify the intervals:

  • Interval 1: x<62 x < -\frac{\sqrt{6}}{2}
  • Interval 2: 62<x<62 -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2}
  • Interval 3: x>62 x > \frac{\sqrt{6}}{2}

Test each interval to determine positivity or negativity:

  • For Interval 1 (x<62 x < -\frac{\sqrt{6}}{2} ): The parabola opens downwards and is negative outside roots.
  • For Interval 2 (62<x<62-\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2}): This interval is between the roots, so y>0 y > 0 .
  • For Interval 3 (x>62 x > \frac{\sqrt{6}}{2} ): Again, as the parabola opens downward, y<0 y < 0 .

Therefore, the positive domain is 62<x<62 -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2} , and the negative domains are x<62 x < -\frac{\sqrt{6}}{2} and x>62 x > \frac{\sqrt{6}}{2} .

The correct answer is choice 4.

x>0:62<x<62 x > 0: -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2}

x>62 x > \frac{\sqrt{6}}{2} or x<0:x<62 x < 0: x < -\frac{\sqrt{6}}{2}

Answer

x > 0 : -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2}

x > \frac{\sqrt{6}}{2} or x < 0 : x < -\frac{\sqrt{6}}{2}