Find the standard representation of the following function
f(x)=(−x+1)2+3
To convert the function f(x)=(−x+1)2+3 to its standard form, follow these steps:
Step 1: Expand the binomial (−x+1)2.
(−x+1)2=(−x)2+2(−x)(1)+12
This simplifies to:
(−x)2=x2
2(−x)(1)=−2x
12=1
Combining these terms gives:
(−x+1)2=x2−2x+1
Step 2: Add the constant term +3 to the expanded form:
f(x)=(x2−2x+1)+3
Step 3: Simplify the expression:
f(x)=x2−2x+1+3=x2−2x+4
Thus, the standard representation of the function is f(x)=x2−2x+4.
f(x)=x2−2x+4