Convert Vertex Form to Standard Form: Explore (x-2)² + 4

Question

Find the standard representation of the following function

f(x)=(x2)2+4 f(x)=(x-2)^2+4

Video Solution

Step-by-Step Solution

We need to convert the given function f(x)=(x2)2+4 f(x) = (x-2)^2 + 4 to standard form.

To expand (x2)2 (x-2)^2 , we use the formula (ab)2=a22ab+b2 (a-b)^2 = a^2 - 2ab + b^2 . Applying this to (x2)2 (x-2)^2 , we get:

  • (x2)2=x24x+4 (x-2)^2 = x^2 - 4x + 4 .

This accounts for the expanded square. Next, we add the constant term 4 4 from the original function (x2)2+4 (x-2)^2 + 4 :

  • f(x)=x24x+4+4 f(x) = x^2 - 4x + 4 + 4 .

Simplify by combining the constant terms:

  • f(x)=x24x+8 f(x) = x^2 - 4x + 8 .

The standard form of the function is thus f(x)=x24x+8 f(x) = x^2 - 4x + 8 .

Answer

f(x)=x24x+8 f(x)=x^2-4x+8