Find the positive and negative domains of the function below:
Determine for which values of the following is true:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Find the positive and negative domains of the function below:
Determine for which values of the following is true:
To solve this problem, we'll determine when the product is positive. This involves finding the roots of the equation and testing the intervals between these roots:
Step 1: **Determine the roots of the factors.**
- The first factor gives the root .
- The second factor gives the root .
Step 2: **Identify intervals based on these roots.**
- The roots divide the -axis into three intervals: , , and .
Step 3: **Analyze the sign of the function in each interval.**
- For :
- and , so the product is negative.
- For :
- Both and , so the product is positive.
- For :
- and , so the product is negative.
Therefore, the intervals where are .
This matches the given correct answer choice: .
The graph of the function below intersects the X-axis at points A and B.
The vertex of the parabola is marked at point C.
Find all values of \( x \) where \( f\left(x\right) > 0 \).
Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime