Solve (3x+1)(1-3x) > 0: Finding Values for Positive Function Output

Question

Look at the following function:

y=(3x+1)(13x) y=\left(3x+1\right)\left(1-3x\right)

Determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To solve the problem, we analyze the function:

The function is given as y=(3x+1)(13x) y = (3x + 1)(1 - 3x) . This function is a quadratic expression in the factored form, which allows us to find the roots and analyze the intervals.

Step 1: Identify the roots.
Set each factor equal to zero:
3x+1=0 3x + 1 = 0 leads to x=13 x = -\frac{1}{3} .
13x=0 1 - 3x = 0 leads to x=13 x = \frac{1}{3} .

Step 2: Determine the sign in each interval divided by the roots.
The roots divide the real number line into the following intervals: (,13) (-\infty, -\frac{1}{3}) , (13,13) (-\frac{1}{3}, \frac{1}{3}) , and (13,) (\frac{1}{3}, \infty) .

Step 3: Test the sign of y y in each interval:

  • For x(,13) x \in (-\infty, -\frac{1}{3}) , choose x=1 x = -1 :
    (3(1)+1)(13(1))=(2)(4)=8 (3(-1) + 1)(1 - 3(-1)) = (-2)(4) = -8 . So, y<0 y < 0 .
  • For x(13,13) x \in (-\frac{1}{3}, \frac{1}{3}) , choose x=0 x = 0 :
    (3(0)+1)(13(0))=(1)(1)=1 (3(0) + 1)(1 - 3(0)) = (1)(1) = 1 . So, y>0 y > 0 .
  • For x(13,) x \in (\frac{1}{3}, \infty) , choose x=1 x = 1 :
    (3(1)+1)(13(1))=(4)(2)=8 (3(1) + 1)(1 - 3(1)) = (4)(-2) = -8 . So, y<0 y < 0 .

Thus, the function y=(3x+1)(13x) y = (3x + 1)(1 - 3x) is positive for x x in the interval 13<x<13 -\frac{1}{3} < x < \frac{1}{3} .

Therefore, the values of x x for which f(x)>0 f(x) > 0 are 13<x<13 -\frac{1}{3} < x < \frac{1}{3} .

The correct answer is: 13<x<13 -\frac{1}{3} < x < \frac{1}{3} .

Answer

-\frac{1}{3} < x < \frac{1}{3}