Solve the Quadratic Inequality: When is -1/7x² - 23/7x Greater Than Zero?

Question

Look at the following function:

y=17x2237x y=-\frac{1}{7}x^2-2\frac{3}{7}x

Determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the coefficients from the quadratic function y=17x2237x y = -\frac{1}{7}x^2 - 2\frac{3}{7}x . Set a=17 a = -\frac{1}{7} , b=177 b = -\frac{17}{7} , and c=0 c = 0 .
  • Step 2: Use the quadratic formula to find the roots of the equation f(x)=0 f(x) = 0 .
  • Step 3: Apply the formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .

Now, let's work through the calculations:

First, we calculate the discriminant: b24ac=(177)24(17)(0)=28949. b^2 - 4ac = \left(-\frac{17}{7}\right)^2 - 4\left(-\frac{1}{7}\right)(0) = \frac{289}{49}. The discriminant is positive, indicating two distinct real roots.

The roots are computed as: x=(177)±289492(17). x = \frac{-(-\frac{17}{7}) \pm \sqrt{\frac{289}{49}}}{2\left(-\frac{1}{7}\right)}. Simplify to: x=177±17727. x = \frac{\frac{17}{7} \pm \frac{17}{7}}{-\frac{2}{7}}. For x=177+17727 x = \frac{\frac{17}{7} + \frac{17}{7}}{-\frac{2}{7}} , x=34727=17. x = \frac{\frac{34}{7}}{-\frac{2}{7}} = -17. And, for x=17717727 x = \frac{\frac{17}{7} - \frac{17}{7}}{-\frac{2}{7}} , x=027=0. x = \frac{0}{-\frac{2}{7}} = 0.

The roots are x=17 x = -17 and x=0 x = 0 . Therefore, the intervals to consider are (,17) (-\infty, -17) , (17,0) (-17, 0) , and (0,) (0, \infty) .

Step 4: Test values in these intervals:

  • For x<17 x < -17 : Choose x=18 x = -18 in f(x)=17x2177x f(x) = -\frac{1}{7}x^2 - \frac{17}{7}x . We get positive value, as substitute results in positive after sign evaluation.
  • For 17<x<0 -17 < x < 0 : Choose x=1 x = -1 in f(x) f(x) , resulting in negative function value.
  • For x>0 x > 0 : Choose x=1 x = 1 in f(x) f(x) , yielding positive function value.

Thus, f(x)>0 f(x) > 0 for x>0 x > 0 or x<17 x < -17 .

Therefore, the solution to the problem is x>0 x > 0 or x<17 x < -17 .

Answer

x > 0 or x < -17