Solve the Complex Fraction Equation: 2x(2/3x+4/7y)+6/7x(4+☐)=1⅓x²+3⅜x+2xy

Question

2x(23x+47y)+67x(4+)=113x2+337x+2xy 2x(\frac{2}{3}x+\frac{4}{7}y)+\frac{6}{7}x(4+☐)=1\frac{1}{3}x^2+3\frac{3}{7}x+2xy

=? ☐=\text{?}

Video Solution

Solution Steps

00:00 Find the unknown
00:06 Open parentheses properly, multiply by each factor
00:17 Convert mixed fractions to fractions
00:36 Calculate the multiplications
00:50 Reduce what's possible
00:59 And this is the solution to the question

Step-by-Step Solution

To solve this equation, our goal is to determine the placeholder . Let's follow these steps:
Step 1: Expand both sides.

The left side of the equation becomes:
2x(23x+47y)+67x(4+)amp;=2x23x+2x47y+67x4+67xamp;=43x2+87xy+247x+67x. \begin{aligned} 2x\left(\frac{2}{3}x + \frac{4}{7}y\right) + \frac{6}{7}x(4+☐) &= 2x \cdot \frac{2}{3}x + 2x \cdot \frac{4}{7}y + \frac{6}{7}x \cdot 4 + \frac{6}{7}x \cdot ☐ \\ &= \frac{4}{3}x^2 + \frac{8}{7}xy + \frac{24}{7}x + \frac{6}{7}x \cdot ☐. \end{aligned}

Step 2: Simplify the right side.
The right side is already in simplified form: 113x2+337x+2xy=43x2+247x+2xy.1\frac{1}{3}x^2 + 3\frac{3}{7}x + 2xy = \frac{4}{3}x^2 + \frac{24}{7}x + 2xy.

Step 3: Equate the coefficients of like terms from both sides of the equation.

  • Compare x2x^2 coefficients: 43=43\frac{4}{3} = \frac{4}{3}

  • Compare xx coefficients: 247=247\frac{24}{7} = \frac{24}{7}

  • Compare xyxy coefficients: 87+67=2\frac{8}{7} + \frac{6}{7}☐ = 2

Step 4: Solve for the placeholder using the following xyxy equation:

87+67amp;=267amp;=28767amp;=1478767amp;=67amp;=y \begin{aligned} \frac{8}{7} + \frac{6}{7}☐ &= 2 \\ \frac{6}{7}☐ &= 2 - \frac{8}{7} \\ \frac{6}{7}☐ &= \frac{14}{7} - \frac{8}{7} \\ \frac{6}{7}☐ &= \frac{6}{7} \\ ☐ &= y \end{aligned}

Therefore, the placeholder must be filled with y \mathbf{y} for the equation to be correct.

Answer

y y