Compare Expressions: Which Options Equal 9a+5n in Algebraic Form

Question

Which expressions are equal to the following:

9a+5n 9a+5n

a. 4(a+n)+5an 4(a+n)+5a\cdot n

b. 3(an)+6a+8n 3(a-n)+6a+8n

c. 20a7n11a+12n 20a-7n-11a+12n

d. 10an+6an 10a-n+6a-n

e. 9(a+n)4n2 9(a+n)-\frac{4n}{2}

f. 3(a+n)(n5)+24a3n23an+20n 3(a+n)(n-5)+24a-3n^2-3an+20n

Video Solution

Step-by-Step Solution

To solve this problem, we will simplify each expression given in options a through f, and compare each to the expression 9a+5n 9a + 5n .

  • a. 4(a+n)+5an 4(a+n)+5a\cdot n
    Expanding, we have:
    4a+4n+5an 4a + 4n + 5an .
    The presence of the term 5an 5an makes it different from 9a+5n 9a + 5n . Therefore, it is not equivalent.
  • b. 3(an)+6a+8n 3(a-n)+6a+8n
    Expanding, we have:
    3a3n+6a+8n 3a - 3n + 6a + 8n .
    Combining like terms, we get:
    (3a+6a)+(3n+8n)=9a+5n (3a + 6a) + (-3n + 8n) = 9a + 5n .
    This matches 9a+5n 9a + 5n .
  • c. 20a7n11a+12n 20a-7n-11a+12n
    Combining like terms, we have:
    (20a11a)+(7n+12n)=9a+5n (20a - 11a) + (-7n + 12n) = 9a + 5n .
    This also matches 9a+5n 9a + 5n .
  • d. 10an+6an 10a-n+6a-n
    Combining like terms, we have:
    (10a+6a)+(nn)=16a2n (10a + 6a) + (-n - n) = 16a - 2n .
    This is not equivalent to 9a+5n 9a + 5n .
  • e. 9(a+n)4n2 9(a+n)-\frac{4n}{2}
    Expanding and simplifying, we have:
    9a+9n2n=9a+7n 9a + 9n - 2n = 9a + 7n .
    This is not 9a+5n 9a + 5n .
  • f. 3(a+n)(n5)+24a3n23an+20n 3(a+n)(n-5)+24a-3n^2-3an+20n
    Expanding 3(a+n)(n5) 3(a+n)(n-5) , we have:
    3(an+n25a5n)=3an+3n215a15n 3(an + n^2 - 5a - 5n) = 3an + 3n^2 - 15a - 15n .
    The expression becomes:
    (3an+3n215a15n)+24a3n23an+20n (3an + 3n^2 - 15a - 15n) + 24a - 3n^2 - 3an + 20n .
    Combining like terms, we find:
    9a+5n 9a + 5n .
    This matches 9a+5n 9a + 5n .

Therefore, the expressions that are equal to 9a+5n 9a + 5n are options b, c, and f.

The correct answer choice is b, c, f.

Answer

b, c, f