Solve the Fraction Equation: Simplify 30x Divided by 4y/5z

Question

30x:4y5z(z:9y10x+xy:1z)=? 30x:\frac{4y}{5z}-(z:\frac{9y}{10x}+\frac{x}{y}:\frac{1}{z})=\text{?}

Video Solution

Solution Steps

00:00 Solve
00:03 Division is also multiplication by reciprocal
00:33 Move the multiplication to the numerator
00:35 Negative times positive always equals negative
00:50 Factor out the common term from parentheses
01:00 Solve the parentheses
01:03 And this is the solution to the question

Step-by-Step Solution

To solve this problem, we'll simplify the expression step-by-step:

  • Step 1: Simplify 30x:4y5z30x : \frac{4y}{5z}.
  • Step 2: Simplify z:9y10xz : \frac{9y}{10x}.
  • Step 3: Simplify xy:1z\frac{x}{y} : \frac{1}{z}.
  • Step 4: Combine the simplified forms according to the overall expression.

Let's work through these steps:

Step 1: Simplify 30x:4y5z30x : \frac{4y}{5z}. This is equivalent to 30x×5z4y=150xz4y=75xz2y30x \times \frac{5z}{4y} = \frac{150xz}{4y} = \frac{75xz}{2y}.

Step 2: Simplify z:9y10xz : \frac{9y}{10x}. This is equivalent to z×10x9y=10xz9yz \times \frac{10x}{9y} = \frac{10xz}{9y}.

Step 3: Simplify xy:1z\frac{x}{y} : \frac{1}{z}. This is equivalent to xy×z=xzy\frac{x}{y} \times z = \frac{xz}{y}.

Step 4: Substitute these results back into the original expression:

We have 75xz2y(10xz9y+xzy)\frac{75xz}{2y} - \left( \frac{10xz}{9y} + \frac{xz}{y} \right).

Combine the terms in the parentheses:

10xz9y+xzy=10xz9y+9xz9y=19xz9y\frac{10xz}{9y} + \frac{xz}{y} = \frac{10xz}{9y} + \frac{9xz}{9y} = \frac{19xz}{9y}.

Now, compute the final expression:

75xz2y19xz9y=(75×919×218)xzy=6753818xzy=63718xzy=35718xzy\frac{75xz}{2y} - \frac{19xz}{9y} = \left(\frac{75 \times 9 - 19 \times 2}{18}\right)\frac{xz}{y} = \frac{675 - 38}{18} \frac{xz}{y} = \frac{637}{18} \frac{xz}{y} = 35\frac{7}{18} \frac{xz}{y}.

Therefore, the solution to the problem is 35718xzy 35\frac{7}{18}\frac{xz}{y} .

Answer

35718xzy 35\frac{7}{18}\frac{xz}{y}