Solve the Logarithm Product: log_mn × log_zr Step-by-Step

Question

logmn×logzr= \log_mn\times\log_zr=

Video Solution

Solution Steps

00:00 Solve
00:04 We'll use the formula for multiplication of logarithms
00:09 We'll change between the bases of the logarithms
00:16 We'll use this formula in our exercise
00:26 And this is the solution to the question

Step-by-Step Solution

To solve the problem of finding what logmn×logzr \log_m n \times \log_z r equals, we will apply some rules of logarithms:

1. Restate the problem: We need to determine the expression that logmn×logzr \log_m n \times \log_z r is equivalent to. 2. Key information: We have two logarithms: logmn \log_m n and logzr \log_z r . 3. Potential approaches: Use the change of base formula for logarithms. 4. Key formulas: The change of base formula for logarithms states logab=logcblogca \log_a b = \frac{\log_c b}{\log_c a} . 5. Chosen approach: Use the change of base to express each log\log in terms of a common base and simplify. 6. Outline steps: - Apply the change of base formula to each logarithmic term. - Simplify the expression. 7. Assumptions: Assume variables m,n,z,r m, n, z, r are positive real numbers and bases (m m and z z ) are not equal to 1. 8. Simplification: Change each logarithm to a form using a common base logarithm for easier simplification. 11. Multiple choice: We will check which answer choice represents the derived expression. 12. Common mistakes: Forgetting to apply the change of base properly or incorrect simplification.

Let's work through the solution step-by-step:

  • Step 1: Apply the change of base formula.
  • Step 2: Simplify the expression using properties of logarithms.
  • Step 3: Identify the expression among the given choices.

Now, let's apply the steps:

Step 1: Use the change of base formula.
By the change of base formula, we know that:

logmn=logknlogkm \log_m n = \frac{\log_k n}{\log_k m}
logzr=logkrlogkz \log_z r = \frac{\log_k r}{\log_k z}

for any base k k . Using the natural logarithm base (ln) (\ln) for simplicity, we substitute into these expressions:

logmn=lnnlnm \log_m n = \frac{\ln n}{\ln m}
logzr=lnrlnz \log_z r = \frac{\ln r}{\ln z}

Step 2: Simplify.

Now, multiply the two expressions:

logmn×logzr=(lnnlnm)×(lnrlnz) \log_m n \times \log_z r = \left(\frac{\ln n}{\ln m}\right) \times \left(\frac{\ln r}{\ln z}\right)

Simplifying, we get:

=lnn×lnrlnm×lnz = \frac{\ln n \times \ln r}{\ln m \times \ln z}

Step 3: Expression equivalence analysis.

By rearranging the terms using logarithmic properties, it follows that the expression simplifies to:

logzn×logmr \log_z n \times \log_m r

Therefore, the solution to the problem is logzn×logmr \log_z n \times \log_m r .

This matches option 1 in the multiple choice answers provided.

Answer

logzn×logmr \log_zn\times\log_mr


Related Subjects