Solve This Expression: What Does 100 : (2x/18a) - ((3x/a) + 14a - 3x) Equal?

Question

100:2x18a(3xa+14a3x)=? 100:\frac{2x}{18a}-(\frac{3x}{a}+14a-3x)=\text{?}

Video Solution

Solution Steps

00:00 Solve
00:05 Division is also multiplication by the reciprocal
00:15 Negative times positive is always negative
00:25 Negative times negative is always positive
00:35 Divide 18 by 2
00:49 And this is the solution to the question

Step-by-Step Solution

To solve this problem, we'll simplify the given expression step by step:

The problem asks us to evaluate the expression:

100:2x18a(3xa+14a3x) 100:\frac{2x}{18a}-(\frac{3x}{a}+14a-3x)

Step 1: Simplify the expression 2x18a \frac{2x}{18a} .

We can simplify 2x18a\frac{2x}{18a} by reducing the fraction:

2x18a=x9a\frac{2x}{18a} = \frac{x}{9a}

Step 2: Interpret the operation 100:x9a 100:\frac{x}{9a} .

The operation "100 divided by" implies multiplying by the reciprocal:

100:x9a=100×9ax=900ax 100:\frac{x}{9a} = 100 \times \frac{9a}{x} = \frac{900a}{x}

Step 3: Simplify the terms within the parentheses.

The expression inside the parentheses is:

(3xa+14a3x)(\frac{3x}{a} + 14a - 3x)

Step 4: Simplify the entire expression using the expression outside the parentheses.

So, substituting back and simplifying, we have:

900ax3xa14a+3x \frac{900a}{x} - \frac{3x}{a} - 14a + 3x

Therefore, the solution to the problem in simplified form is 900ax3xa14a+3x 900\frac{a}{x} - 3\frac{x}{a} - 14a + 3x .

Thus, the correct choice from the provided options is:

Choice 4: 900ax3xa14a+3x 900\frac{a}{x} - 3\frac{x}{a} - 14a + 3x

Answer

900ax3xa14a+3x 900\frac{a}{x}-3\frac{x}{a}-14a+3x