Solve x²/5 + 1⅓x > 0: Finding Positive Function Values

Question

Look at the following function:

y=15x2+113x y=\frac{1}{5}x^2+1\frac{1}{3}x

Determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

Let's solve the problem step by step:

The function given is y=15x2+113x y = \frac{1}{5}x^2 + 1\frac{1}{3}x . The first step is to convert the mixed number into an improper fraction:

113=43 1\frac{1}{3} = \frac{4}{3} , so the function becomes:

y=15x2+43x y = \frac{1}{5}x^2 + \frac{4}{3}x .

This can be written in standard form ax2+bx+c=0 ax^2 + bx + c = 0 where a=15 a = \frac{1}{5} , b=43 b = \frac{4}{3} , and c=0 c = 0 (not visible, but necessary for proper representation).

Next, we use the quadratic formula to find the roots:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .

Plug in the values:

x=43±(43)24×15×02×15 x = \frac{-\frac{4}{3} \pm \sqrt{\left(\frac{4}{3}\right)^2 - 4 \times \frac{1}{5} \times 0}}{2 \times \frac{1}{5}} .

Simplify where possible:

x=43±16925 x = \frac{-\frac{4}{3} \pm \sqrt{\frac{16}{9}}}{\frac{2}{5}} , leading to:

x=43±4325 x = \frac{-\frac{4}{3} \pm \frac{4}{3}}{\frac{2}{5}} .

This gives roots:

x=0 x = 0 and x=623 x = -6\frac{2}{3} .

The parabola opens upward (since a=15>0 a = \frac{1}{5} > 0 ). The quadratic function is positive between the roots and for values outside them:

This results in two intervals where f(x)>0 f(x) > 0 :

  • x<623 x < -6\frac{2}{3}
  • x>0 x > 0

Thus, the solution to the problem is:

x>0 x > 0 or x<623 x < -6\frac{2}{3} .

Answer

x > 0 or x < -6\frac{2}{3}