Solve: (x/8 + x/4 + x/4) + (31/8) + (y/8) Fraction Equation

Question

x8+318+x4+14x+y8=? \frac{x}{8}+\frac{31}{8}+\frac{x}{4}+\frac{1}{4}x+\frac{y}{8}=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Make sure all terms have a common denominator.
  • Step 2: Combine like terms.
  • Step 3: Simplify the algebraic expression.

Now, let's work through each step:
Step 1: Convert all terms to have a common denominator. The common denominator for 4 and 8 is 8. Thus:
- x4 \frac{x}{4} becomes 2x8 \frac{2x}{8} when converted to have the denominator 8,
- 14x \frac{1}{4}x also becomes 2x8 \frac{2x}{8} when converted to 8.

Step 2: Combine the like terms.
- Combine the x x terms: x8+2x8+2x8=5x8 \frac{x}{8} + \frac{2x}{8} + \frac{2x}{8} = \frac{5x}{8} .
- The constant term: 318 \frac{31}{8} .
- The term with y y : y8 \frac{y}{8} .

Step 3: Write the final expression:

The simplified expression is 318+5x8+y8 \frac{31}{8} + \frac{5x}{8} + \frac{y}{8} .

Therefore, combining it we have 378+58x+y8 3\frac{7}{8}+\frac{5}{8}x+\frac{y}{8} . This matches the given choice 378+58x+y8 3\frac{7}{8}+\frac{5}{8}x+\frac{y}{8} .

Hence, the solution to the problem is 378+58x+y8 3\frac{7}{8}+\frac{5}{8}x+\frac{y}{8} .

Answer

378+58x+y8 3\frac{7}{8}+\frac{5}{8}x+\frac{y}{8}