Combine Like Terms: Simplifying (4/7)x + (5/7)y + (3/4)x + (8/9)y

Question

47x+57y+34x+89y=? \frac{4}{7}x+\frac{5}{7}y+\frac{3}{4}x+\frac{8}{9}y=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll proceed as follows:

  • Step 1: Group the like terms involving x x and y y separately.
  • Step 2: Find a common denominator for the terms involving x x .
  • Step 3: Add the fractions to simplify the x x terms.
  • Step 4: Find a common denominator for the terms involving y y .
  • Step 5: Add the fractions to simplify the y y terms.
  • Step 6: Combine the simplified terms for x x and y y .

Now, let's perform these steps in detail:
Step 1: Identify and group the terms:
(47x+34x) \left(\frac{4}{7}x + \frac{3}{4}x\right) and (57y+89y) \left(\frac{5}{7}y + \frac{8}{9}y\right) .

Step 2: Find a common denominator for the x x -terms:
The denominators are 7 and 4. The least common denominator (LCD) is 28.

Step 3: Add the x x -terms:
47x=4428x=1628x\frac{4}{7}x = \frac{4 \cdot 4}{28}x = \frac{16}{28}x
34x=3728x=2128x\frac{3}{4}x = \frac{3 \cdot 7}{28}x = \frac{21}{28}x
Adding them gives 1628x+2128x=3728x=1928x\frac{16}{28}x + \frac{21}{28}x = \frac{37}{28}x = 1\frac{9}{28}x.

Step 4: Find a common denominator for the y y -terms:
The denominators are 7 and 9. The LCD is 63.

Step 5: Add the y y -terms:
57y=5963y=4563y\frac{5}{7}y = \frac{5 \cdot 9}{63}y = \frac{45}{63}y
89y=8763y=5663y\frac{8}{9}y = \frac{8 \cdot 7}{63}y = \frac{56}{63}y
Adding them gives 4563y+5663y=10163y=13863y\frac{45}{63}y + \frac{56}{63}y = \frac{101}{63}y = 1\frac{38}{63}y.

Step 6: Combine the simplified terms:
The final expression is 1928x+13863y 1\frac{9}{28}x + 1\frac{38}{63}y .

Therefore, the solution to the problem is 1928x+13863y 1\frac{9}{28}x + 1\frac{38}{63}y .

Answer

1928x+13863y 1\frac{9}{28}x+1\frac{38}{63}y