Transform f(x) = -x(x-8) to Its Standard Representation

Question

Find the standard representation of the following function

f(x)=x(x8) f(x)=-x(x-8)

Video Solution

Step-by-Step Solution

To solve this problem, we'll convert the given function from its factored form to the standard form using the distributive property. The given function is f(x)=x(x8) f(x) = -x(x - 8) .

Let's go through the necessary steps:

  • Step 1: Apply the distributive property to expand the expression.
    f(x)=x(x8)=xx+(x)(8) f(x) = -x(x - 8) = -x \cdot x + (-x) \cdot (-8)
  • Step 2: Simplify each term.
    xx=x2-x \cdot x = -x^2 and (x)(8)=+8x(-x) \cdot (-8) = +8x.
  • Step 3: Combine the terms to express f(x) f(x) in standard form:
    f(x)=x2+8x f(x) = -x^2 + 8x .

Therefore, the standard representation of the function is f(x)=x2+8x f(x) = -x^2 + 8x .

Comparing this result to the multiple-choice options, we can see that the correct choice is option 3: f(x)=x2+8x f(x)=-x^2+8x .

Answer

f(x)=x2+8x f(x)=-x^2+8x