Standard Form of the Quadratic Function

The standard form of the quadratic function is:
Y=ax2+bx+cY=ax^2+bx+c

For example:
Y=4x2+3x+15Y=4x^2+3x+15

Practice Standard Representation

Examples with solutions for Standard Representation

Exercise #1

Create an algebraic expression based on the following parameters:

a=1,b=1,c=1 a=-1,b=-1,c=-1

Video Solution

Step-by-Step Solution

The goal is to express the quadratic equation y=ax2+bx+c y = ax^2 + bx + c using the given parameters a=1 a = -1 , b=1 b = -1 , and c=1 c = -1 .

First, substitute the values of a a , b b , and c c into the standard form:

  • Substituting a=1 a = -1 , the term becomes x2 -x^2 .
  • Substituting b=1 b = -1 , the term becomes x -x .
  • Substituting c=1 c = -1 , the term remains 1-1.

Combine these terms to form the full expression:


y=x2x1 y = -x^2 - x - 1

Therefore, the algebraic expression for the parameters a=1 a = -1 , b=1 b = -1 , and c=1 c = -1 is: x2x1 -x^2 - x - 1 .

Comparing with the given choices, the correct choice is option 4: x2x1 -x^2-x-1

Answer

x2x1 -x^2-x-1

Exercise #2

Create an algebraic expression based on the following parameters:

a=3,b=0,c=3 a=3,b=0,c=-3

Video Solution

Step-by-Step Solution

To solve the problem of creating an algebraic expression with the given parameters, we will proceed as follows:

  • Step 1: Identify the given coefficients for the quadratic function, which are a=3 a = 3 , b=0 b = 0 , and c=3 c = -3 .
  • Step 2: Substitute these values into the standard quadratic expression y=ax2+bx+c y = ax^2 + bx + c .

Through substitution, the expression becomes:

y=3x2+0x3 y = 3x^2 + 0x - 3

We can further simplify this expression:

y=3x23 y = 3x^2 - 3

Thus, the algebraic expression with the given parameters is y=3x23 y = 3x^2 - 3 .

The correct answer corresponds to choice number 1: 3x23 3x^2-3 .

Therefore, the solution to the problem is

y=3x23 y = 3x^2 - 3

Answer

3x23 3x^2-3

Exercise #3

Create an algebraic expression based on the following parameters:


a=1,b=1,c=1 a=1,b=-1,c=1

Video Solution

Step-by-Step Solution

To solve this problem, let's form the algebraic expression using the standard quadratic formula:

y=ax2+bx+c y = ax^2 + bx + c

Given are the values:
a=1 a = 1 ,
b=1 b = -1 ,
c=1 c = 1 .

Substituting these values into the formula, we have:
y=1x2+(1)x+1 y = 1 \cdot x^2 + (-1) \cdot x + 1

This simplifies to:
y=x2x+1 y = x^2 - x + 1

Thus, the algebraic expression is x2x+1\boldsymbol{x^2 - x + 1}.

The correct choice from the given options is:

Choice 3: x2x+1 x^2-x+1

Answer

x2x+1 x^2-x+1

Exercise #4

Create an algebraic expression based on the following parameters:


a=1,b=8,c=0 a=-1,b=-8,c=0

Video Solution

Step-by-Step Solution

To solve this problem, we'll start by substituting the given parameters into the standard quadratic formula:

y=ax2+bx+c y = ax^2 + bx + c

The problem gives us the values:

  • a=1 a = -1
  • b=8 b = -8
  • c=0 c = 0

This means we need to replace a a , b b , and c c in the formula:

y=(1)x2+(8)x+0 y = (-1)x^2 + (-8)x + 0

Simplifying this expression further:

  • The term with a a : (-1)x^2\) results in x2 -x^2 .
  • The term with b b : (-8)x\) simplifies to 8x -8x .
  • The term with c c : 0 0 contributes nothing to the expression, so it is omitted.

Thus, the final algebraic expression is:

y=x28x y = -x^2 - 8x

Therefore, the algebraic expression based on the given parameters is

x28x -x^2 - 8x .

Answer

x28x -x^2-8x

Exercise #5

Create an algebraic expression based on the following parameters:

a=3,b=0,c=0 a=3,b=0,c=0

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Substitute the given values a=3 a = 3 , b=0 b = 0 , and c=0 c = 0 into the quadratic function formula y=ax2+bx+c y = ax^2 + bx + c .
  • Step 2: Simplify the expression.

Let's execute these steps:

Step 1: Substitute the values into the formula:
y=3x2+0x+0 y = 3x^2 + 0x + 0

Step 2: Simplify the expression:
Eliminate the terms with zero coefficients to get:
y=3x2 y = 3x^2

Thus, the algebraic expression for the quadratic function with a=3 a = 3 , b=0 b = 0 , and c=0 c = 0 is 3x2 3x^2 .

Therefore, the correct choice from the options provided is choice 1: 3x2 3x^2

Answer

3x2 3x^2

Exercise #6

Create an algebraic expression based on the following parameters:

a=2,b=4,c=8 a=2,b=4,c=8

Video Solution

Step-by-Step Solution

To solve this problem, we need to form an algebraic expression for a quadratic function using given parameters.

We start by recalling the standard form of a quadratic function: (ax2+bx+c)( ax^2 + bx + c ). In this expression:

  • a a is the coefficient of x2 x^2
  • b b is the coefficient of x x
  • c c is the constant term

Given the values are a=2 a = 2 , b=4 b = 4 , and c=8 c = 8 , we substitute these into the standard form equation:

ax2+bx+c=2x2+4x+8 ax^2 + bx + c = 2x^2 + 4x + 8

This yields the algebraic expression for the quadratic function.

The correct expression, given all calculations and simplifications, is 2x2+4x+8 2x^2 + 4x + 8 .

Referring to the choices provided, the correct choice is:

: (2x2+4x+8)( 2x^2 + 4x + 8 )

Therefore, the solution to the problem is 2x2+4x+8\boxed{2x^2 + 4x + 8}.

Answer

2x2+4x+8 2x^2+4x+8

Exercise #7

Create an algebraic expression based on the following parameters:

a=2,b=12,c=4 a=2,b=\frac{1}{2},c=4

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow the steps outlined:

  • Step 1: Identify the given values for the quadratic function's parameters: a=2 a = 2 , b=12 b = \frac{1}{2} , and c=4 c = 4 .
  • Step 2: Apply these values to the standard quadratic form y=ax2+bx+c y = ax^2 + bx + c .
  • Step 3: Substitute the values to construct the algebraic expression.

Now, let's proceed with these steps:

Given the standard form of a quadratic expression y=ax2+bx+c y = ax^2 + bx + c :

Substituting the values, we obtain:

y=2x2+12x+4 y = 2x^2 + \frac{1}{2}x + 4

Therefore, the correct algebraic expression for the quadratic function is 2x2+12x+4 2x^2 + \frac{1}{2}x + 4 .

Answer

2x2+12x+4 2x^2+\frac{1}{2}x+4

Exercise #8

Create an algebraic expression based on the following parameters:

a=4,b=16,c=0 a=4,b=-16,c=0

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Formulate using the standard quadratic expression template.
  • Step 2: Substitute the given parameters.
  • Step 3: Simplify the resultant expression.

Now, let's work through each step:

Step 1: We use the standard form of a quadratic expression, which is ax2+bx+c ax^2 + bx + c .

Step 2: Substitute the values a=4 a = 4 , b=16 b = -16 , and c=0 c = 0 into this template:

ax2+bx+c4x216x+0 ax^2 + bx + c \rightarrow 4x^2 - 16x + 0

Step 3: Simplify the expression:

The expression simplifies to 4x216x 4x^2 - 16x .

Thus, the algebraic expression based on the given parameters is 4x216x 4x^2 - 16x .

Checking against the answer choices, the correct choice is: 4x216x 4x^2 - 16x .

Answer

4x216x 4x^2-16x

Exercise #9

Create an algebraic expression based on the following parameters:

a=1,b=1,c=0 a=-1,b=1,c=0

Video Solution

Step-by-Step Solution

To determine the algebraic expression, we start with the standard quadratic function:

y=ax2+bx+c y = ax^2 + bx + c

Given the values:

  • a=1 a = -1
  • b=1 b = 1
  • c=0 c = 0

We substitute these into the formula:

y=(1)x2+1x+0 y = (-1)x^2 + 1x + 0

Simplifying the expression gives:

y=x2+x y = -x^2 + x

Thus, the algebraic expression, when these parameters are substituted, is:

The solution to the problem is x2+x \boxed{-x^2 + x} .

Answer

x2+x -x^2+x

Exercise #10

Create an algebraic expression based on the following parameters:

a=0,b=1,c=0 a=0,b=1,c=0

Video Solution

Step-by-Step Solution

To solve this problem, we'll use the following steps:

  • Step 1: Substitute a=0 a = 0 , b=1 b = 1 , c=0 c = 0 into the quadratic equation y=ax2+bx+c y = ax^2 + bx + c .
  • Step 2: Simplify the expression based on these substitutions.

Working through these steps:

Step 1: Start with the expression y=ax2+bx+c y = ax^2 + bx + c .

Since a=0 a = 0 , then ax2=0x2=0 ax^2 = 0 \cdot x^2 = 0 .
Since b=1 b = 1 , then bx=1x=x bx = 1 \cdot x = x .
Since c=0 c = 0 , then c=0 c = 0 .

Step 2: Plug these values into the equation:

The expression simplifies to:

y=0+x+0 y = 0 + x + 0

Thus, the simplified algebraic expression is y=x y = x .

Therefore, the solution to the problem is x x .

Answer

x x

Exercise #11

Create an algebraic expression based on the following parameters:

a=1,b=0,c=0 a=-1,b=0,c=0

Video Solution

Step-by-Step Solution

We begin by noting that the general form of a quadratic function is represented by the equation:

y=ax2+bx+c y = ax^2 + bx + c

Given the parameters a=1 a = -1 , b=0 b = 0 , and c=0 c = 0 , we substitute these values into the equation:

y=(1)x2+(0)x+0 y = (-1)x^2 + (0)x + 0

Simplifying the expression, we get:

y=x2 y = -x^2

Thus, the algebraic expression representing the given parameters is x2 -x^2 .

The correct answer choice that corresponds to this expression is:

x2 -x^2

Answer

x2 -x^2

Exercise #12

Create an algebraic expression based on the following parameters:

a=3,b=6,c=9 a=3,b=6,c=9

Video Solution

Step-by-Step Solution

To solve this problem, we will follow these steps:

  • Step 1: Identify the given parameters a=3 a = 3 , b=6 b = 6 , c=9 c = 9 .
  • Step 2: Use the standard formula for a quadratic expression, which is y=ax2+bx+c y = ax^2 + bx + c .
  • Step 3: Substitute the given values into this formula.

Now, let's work through each step:
Step 1: We have the parameters a=3 a = 3 , b=6 b = 6 , c=9 c = 9 .
Step 2: The standard form of a quadratic equation is y=ax2+bx+c y = ax^2 + bx + c .
Step 3: Substituting the given values into the expression, we get:

y=3x2+6x+9 y = 3x^2 + 6x + 9

Therefore, the algebraic expression based on the given parameters is:

3x2+6x+9 3x^2 + 6x + 9 .

Answer

3x2+6x+9 3x^2+6x+9

Exercise #13

Create an algebraic expression based on the following parameters:

a=2,b=0,c=6 a=2,b=0,c=6

Video Solution

Step-by-Step Solution

To solve this problem, we will construct an algebraic expression using the given parameters in a quadratic function format.

  • Step 1: Identify the formula required. The standard quadratic function is given by ax2+bx+c ax^2 + bx + c .
  • Step 2: Substitute the given values of a a , b b , and c c . We have a=2 a = 2 , b=0 b = 0 , and c=6 c = 6 .
  • Step 3: Insert these values into the formula: 2x2+0x+6 2x^2 + 0x + 6 .
  • Step 4: Simplify the expression. Since the coefficient of x x is zero, 0x 0x can be omitted. This simplifies the expression to 2x2+6 2x^2 + 6 .

The final algebraic expression, representing the given parameters in a quadratic form, is 2x2+6 2x^2 + 6 .

Therefore, the correct algebraic expression is 2x2+6 2x^2 + 6 .

Answer

2x2+6 2x^2+6

Exercise #14

Create an algebraic expression based on the following parameters:

a=2,b=0,c=4 a=2,b=0,c=4

Video Solution

Step-by-Step Solution

To solve this problem, we will derive the algebraic expression step-by-step:

Step 1: Identify the given information:
The problem states a=2 a = 2 , b=0 b = 0 , and c=4 c = 4 .

Step 2: Write the standard quadratic expression:
The general form is y=ax2+bx+c y = ax^2 + bx + c .

Step 3: Substitute the given values into the expression:
Replace a a with 2, b b with 0, and c c with 4:
y=2x2+0x+4 y = 2x^2 + 0x + 4 .

Step 4: Simplify the expression:
Since 0x 0x is zero, the expression simplifies to:
y=2x2+4 y = 2x^2 + 4 .

Thus, the algebraic expression based on the given parameters is 2x2+4 2x^2 + 4 .

The correct answer is: 2x2+4 2x^2 + 4 (Choice 1).

Answer

2x2+4 2x^2+4

Exercise #15

Create an algebraic expression based on the following parameters:

a=1,b=16,c=64 a=1,b=16,c=64

Video Solution

Step-by-Step Solution

To solve this problem, let's proceed with the construction of the quadratic expression:

  • Step 1: Recognize the standard form of a quadratic expression, which is ax2+bx+c ax^2 + bx + c .
  • Step 2: Substitute the given values into this formula:
    • a=1 a = 1
    • b=16 b = 16
    • c=64 c = 64
    Plugging in these values, we determine the expression to be 1x2+16x+64 1x^2 + 16x + 64 , which simplifies to x2+16x+64 x^2 + 16x + 64 .

Thus, the algebraic expression we derive from these parameters is the quadratic expression:

x2+16x+64 x^2 + 16x + 64

This matches the correct choice provided in the given multiple-choice options.

Answer

x2+16x+64 x^2+16x+64