If:
Solve the following subtraction problem:
If:
\( \colorbox{yellow}\\=12 \)
Solve the following subtraction problem:
\( 68- \colorbox{yellow}\\= \)
Determine the numerical value of the triangle:
\( 75-\triangle=70 \)
Determine the numerical value of the triangle:
\( 94-\triangle=90 \)
If:
\( \circ=7 \)
Solve the following subtraction problem:
\( 69-\circ= \)
If
\( \circ=7 \)
Solve the following subtraction problem:
\( 57-\circ= \)
If:
Solve the following subtraction problem:
To solve this problem, let's follow the steps below:
The steps for subtraction are:
Break down into simpler components:
Subtract the units:
Subtract the tens:
Combine the results:
Therefore, the solution to the problem is .
The correct choice from the provided options is .
Determine the numerical value of the triangle:
To solve the equation , we need to find the value of .
We start with the equation:
Our goal is to solve for . To do this, we isolate by rearranging the equation:
Next, we perform the subtraction on the right side:
Therefore, the numerical value of the triangle is .
Thus, the correct answer is choice 4: .
Determine the numerical value of the triangle:
To solve this problem, follow these steps:
Thus, the numerical value represented by the triangle is .
If:
Solve the following subtraction problem:
To solve this mathematical problem, we utilize the following steps:
Let's execute each step:
Step 1: Given that , substitute it into the expression: .
Step 2: This becomes . Performing the subtraction:
.
Therefore, the solution to the problem is .
If
Solve the following subtraction problem:
The problem requires us to solve the equation , where . Follow these steps:
Following these steps, the solution to the problem is .
Determine the numerical value of the triangle:
\( 88-\triangle=80 \)
Determine the numerical value of the triangle:
If
\( \triangle-9=20 \)
Determine the numerical value of the triangle:
\( \triangle-8=90 \)
Determine the numerical value of the triangle:
\( \triangle-3=70 \)
Determine the numerical value of the triangle:
\( \triangle-7=80 \)
Determine the numerical value of the triangle:
To solve the problem , we will proceed as follows:
Thus, the value of the triangle, , is .
The correct answer from the provided choices is option
Determine the numerical value of the triangle:
If
To solve this problem, we'll follow these steps:
Now, let's carry out these steps:
Starting with the equation .
To find , we add 9 to both sides:
Simplifying this gives us:
Therefore, the numerical value represented by is .
Looking at the multiple-choice options, we find that matches choice 3.
Determine the numerical value of the triangle:
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: Add 8 to both sides of the equation:
Step 2: Simplify the equation:
This means the value of the triangle () that satisfies the equation is .
Therefore, the solution to the problem is .
Determine the numerical value of the triangle:
To solve the equation , we will use basic algebra to isolate the value of .
We start by adding 3 to both sides of the equation to isolate :
Notice that on the left side simplifies to 0, which leaves us with:
Now, perform the arithmetic on the right side:
Hence, the numerical value of the triangle is .
Determine the numerical value of the triangle:
The problem involves solving a simple algebraic equation:
This simplifies to:
The value of the triangle symbol is .
Therefore, the solution to the problem is , which corresponds to choice 4 in the provided list of answer choices.
If
\( \circ=8 \)
Solve the following subtraction problem:
\( 57-\circ= \)
If
\( \colorbox{yellow}\\=9 \)
Solve the following subtraction problem:
\( 68- \colorbox{yellow}\\= \)
If
\( \circ=8 \)
Solve the following subtraction problem:
\( 34-\circ= \)
If
\( \circ=8 \)
Solve the following subtraction problem:
\( 24-\circ= \)
If
\( \colorbox{yellow}\\=7 \)
Solve the following subtraction problem:
\( 62- \colorbox{yellow}\\= \)
If
Solve the following subtraction problem:
To solve this problem, we'll perform a direct replacement and subtraction. Here are the steps:
Starting from the rightmost digit of the two numbers involved, we need to subtract 8 from 57:
As a result, .
This solution corresponds to choice 1: .
Therefore, the solution to the problem is .
If
Solve the following subtraction problem:
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: The problem gives us that the yellow box equals 9.
Step 2: Perform the subtraction operation .
Step 3: Calculating the subtraction, we have .
Therefore, the solution to the problem is .
If
Solve the following subtraction problem:
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: We know that . Substitute this value into the expression:
becomes .
Step 2: Perform the subtraction:
.
Therefore, the solution to the problem is .
If
Solve the following subtraction problem:
To solve this problem, we will follow these steps:
Now, let's work through each step:
Step 1: The problem tells us that .
Step 2: Substitute into the equation where appears: .
Step 3: Calculate the result of the subtraction:
Start from 24 and count backward by 8 units:
Therefore, the solution to the problem is .
If
Solve the following subtraction problem:
To solve this problem, we'll perform a straightforward subtraction operation:
Therefore, the solution to the problem is .
Given the choices, the correct answer is choice , which is .
If:
\( \colorbox{yellow}\\=7 \)
Solve the following subtraction problem:
\( 81- \colorbox{yellow}\\= \)
If
\( \colorbox{yellow}\\=7 \)
Solve the following subtraction problem:
\( 82- \colorbox{yellow}\\= \)
If:
\( \colorbox{yellow}\\=7 \)
Solve the following subtraction problem:
\( 41- \colorbox{yellow}\\= \)
If:
Solve the following subtraction problem:
To solve this subtraction problem, we'll proceed with the following steps:
Let's work through these steps:
Step 1: From the given information, the yellow box is .
Step 2: Substitute the yellow box with in the expression.
The expression becomes .
Step 3: Calculate . We perform the subtraction:
The result is .
Therefore, the solution to the problem is .
If
Solve the following subtraction problem:
To solve this problem, we'll use the substitution method for the subtraction equation provided:
Therefore, the solution to the problem is .
If:
Solve the following subtraction problem:
To solve this problem, we'll proceed with straightforward subtraction:
Now, let's calculate this step-by-step:
Starting with the minuend 41, subtract the subtrahend 7.
Calculation: .
Therefore, the solution to the subtraction problem is .