Examples with solutions for The Quadratic Formula: Using additional geometric shapes

Exercise #1

The perimeter of a rectangle is 14 cm.

The area of the rectangle is 12 cm².

What are the lengths of its sides?

Video Solution

Step-by-Step Solution

Since in a rectangle each pair of opposite sides are equal to each other, let's call each pair of sides X and Y

Now let's set up a formula to calculate the perimeter of the rectangle:

2x+2y=14 2x+2y=14

Let's divide both sides by 2:

x+y=7 x+y=7

From this formula, we'll calculate X:

x=7y x=7-y

We know that the area of the rectangle equals length times width:

x×y=12 x\times y=12

We know that X equals 7 minus Y, let's substitute this in the formula:

(7y)×y=12 (7-y)\times y=12

7yy2=12 7y-y^2=12

y27y+12=0 y^2-7y+12=0

(y3)×(y4)=0 (y-3)\times(y-4)=0

From this we can claim that:

y=3,y=4 y=3,y=4

Let's go back to the formula we found earlier:

x=7y x=7-y

Let's substitute y equals 3 and we get:

x=73=4 x=7-3=4

Now let's substitute y equals 4 and we get:

x=74=3 x=7-4=3

Therefore, the lengths of the rectangle's sides are 4 and 3

Answer

3, 4

Exercise #2

Look at the parallelogram below.

The labelled angles are acute.

For what values of X is there a solution?

5x-42

Video Solution

Step-by-Step Solution

To determine the values of X X for which the given angle in the parallelogram is acute, we will follow these steps:

  • Step 1: Identify the condition for acuteness using the given angle expression.
  • Step 2: Solve the inequality to ensure the angle remains acute.
  • Step 3: Analyze for any potential solutions or contradictions.

Now, let's carry out each step:
Step 1: The problem gives us the expression 5x42 5x - 42 as the measurement of a labelled angle in the parallelogram. To remain acute, angles must satisfy the inequalities:

  • 5x42<90 5x - 42 < 90

Step 2: Solve the inequality: 5x42<90 5x - 42 < 90 Adding 42 on both sides, we have: 5x<132 5x < 132 Dividing both sides by 5, we find: x<26.4 x < 26.4

Step 3: Since this angle is part of a parallelogram, the opposite angles (180 180^\circ - measured angle) and adjacent angles also adhere to specific conditions. For these adjacent angles (also acuteness required), similar inequalities lead to further constraints which in conjunction with x<26.4 x < 26.4 results in contradiction when further examined due to the nature of parallelograms.

Thus, there turns out to be no common solution across needed constraints with x<26.4 x < 26.4 .

Ultimately, no X X satisfies these conditions and keeps all angles in a parallelogram acute, confirming no solution exists for such a configuration under stated conditions.

Therefore, the solution to the problem is No solution.

Answer

No solution.