The area of the kite can be calculated by multiplying the lengths of the diagonals and dividing this product by .
Master kite area calculations with step-by-step practice problems. Learn convex and concave deltoid formulas, diagonal properties, and solve real geometry exercises.
The area of the kite can be calculated by multiplying the lengths of the diagonals and dividing this product by .
To facilitate the understanding of the concept of calculus, you can use the following drawing and the accompanying formula:
Given the deltoid ABCD
Find the area
Look at the deltoid in the figure:
What is its area?
Let's begin by reminding ourselves of the formula for the area of a kite
Both these values are given to us in the figure thus we can insert them directly into the formula:
(4*7)/2
28/2
14
Answer:
14
Look at the deltoid in the figure:
What is its area?
To solve the exercise, we first need to know the formula for calculating the area of a kite:
It's also important to know that a concave kite, like the one in the question, has one of its diagonals outside the shape, but it's still its diagonal.
Let's now substitute the data from the question into the formula:
(6*5)/2=
30/2=
15
Answer:
15
ACBD is a deltoid.
AD = AB
CA = CB
Given in cm:
AB = 6
CD = 10
Calculate the area of the deltoid.
To solve the exercise, we first need to remember how to calculate the area of a rhombus:
(diagonal * diagonal) divided by 2
Let's plug in the data we have from the question
10*6=60
60/2=30
And that's the solution!
Answer:
30
ABDC is a deltoid.
AB = BD
DC = CA
AD = 12 cm
CB = 16 cm
Calculate the area of the deltoid.
First, let's recall the formula for the area of a rhombus:
(Diagonal 1 * Diagonal 2) divided by 2
Now we will substitute the known data into the formula, giving us the answer:
(12*16)/2
192/2=
96
Answer:
96 cm²
Shown below is the deltoid ABCD.
The diagonal AC is 8 cm long.
The area of the deltoid is 32 cm².
Calculate the diagonal DB.
First, we recall the formula for the area of a kite: multiply the lengths of the diagonals by each other and divide the product by 2.
We substitute the known data into the formula:
We reduce the 8 and the 2:
Divide by 4
Answer:
8 cm