The area of the kite can be calculated by multiplying the lengths of the diagonals and dividing this product by .
Master kite area calculations with step-by-step practice problems. Learn convex and concave deltoid formulas, diagonal properties, and solve real geometry exercises.
The area of the kite can be calculated by multiplying the lengths of the diagonals and dividing this product by .
To facilitate the understanding of the concept of calculus, you can use the following drawing and the accompanying formula:
Given the deltoid ABCD
Find the area
Shown below is the deltoid ABCD.
The diagonal AC is 8 cm long.
The area of the deltoid is 32 cm².
Calculate the diagonal DB.
First, we recall the formula for the area of a kite: multiply the lengths of the diagonals by each other and divide the product by 2.
We substitute the known data into the formula:
We reduce the 8 and the 2:
Divide by 4
Answer:
8 cm
ACBD is a deltoid.
AD = AB
CA = CB
Given in cm:
AB = 6
CD = 10
Calculate the area of the deltoid.
To solve the exercise, we first need to remember how to calculate the area of a rhombus:
(diagonal * diagonal) divided by 2
Let's plug in the data we have from the question
10*6=60
60/2=30
And that's the solution!
Answer:
30
ABDC is a deltoid.
AB = BD
DC = CA
AD = 12 cm
CB = 16 cm
Calculate the area of the deltoid.
First, let's recall the formula for the area of a rhombus:
(Diagonal 1 * Diagonal 2) divided by 2
Now we will substitute the known data into the formula, giving us the answer:
(12*16)/2
192/2=
96
Answer:
96 cm²
Look at the kite ABCD below.
Diagonal DB = 10
CB = 4
Is it possible to calculate the area of the kite? If so, what is it?
To determine if we can calculate the area of the kite, let's consider the steps we would use given complete data:
To calculate the area of a kite, we typically use the formula:
where and represent the lengths of the kite's diagonals.
In this case:
Without knowing , we cannot apply the formula to calculate the area. Thus, given the information provided, it is not possible to determine the area of the kite.
Therefore, the solution to the problem is: It is not possible.
Answer:
It is not possible.
Given the deltoid ABCD
Find the area
To solve the problem of finding the area of the deltoid (kite) ABCD, we will apply the formula for the area of a kite involving its diagonals:
The formula is:
Where and are the lengths of the diagonals. From the problem’s illustration:
The image references imply through markings that their impact in shape is demonstrated via convergence of matching altitudes and isos of plot. The diagonal proportion can be referred via an intercept mark mutual to setup if not altered by mistake redundantly.
Thus: Calculated area
The calculated area matches with the choice option:
Therefore, the area of the deltoid is .
Answer:
cm².