In this article, we will learn the three most common ways to solve a quadratic function easily and quickly.
Master solving quadratic equations with step-by-step practice problems using trinomial factoring, quadratic formula, and completing the square methods.
In this article, we will learn the three most common ways to solve a quadratic function easily and quickly.
The basic quadratic function equation is:
When:
- the coefficient of
- the coefficient of
- the constant term
Solve the following equation:
\( -2x^2+22x-60=0 \)
Solve the following equation:
Let's recall the quadratic formula:

We'll substitute the given data into the formula:
Let's simplify and solve the part under the square root:
Now we'll solve using both methods, once with the addition sign and once with the subtraction sign:
We've arrived at the solution: X=6,-1
Answer:
a = coefficient of x²
b = coefficient of x
c = coefficient of the independent number
What are the components of the equation?
Let's solve the problem step-by-step:
First, consider the given equation:
This equation is almost in the standard form of a quadratic equation:
Where:
Let's identify each of these components from the given equation:
Thus, the components of the quadratic equation are:
, ,
The correct choice from the provided options is
Answer:
a = coefficient of x²
b = coefficient of x
c = coefficient of the independent number
What are the components of the equation?
Let's solve this problem step-by-step by identifying the coefficients of the quadratic equation:
First, examine the given equation:
To make it easier to identify the coefficients, we rewrite the equation in the standard quadratic form:
In this expression, we can now directly identify the coefficients:
Thus, the components of the quadratic equation are:
, ,
By comparing these values to the multiple-choice options, we can determine that the correct choice is:
Choice 4: , ,
Therefore, the final solution is:
, , .
Answer:
a = coefficient of x²
b = coefficient of x
c = coefficient of the constant term
What is the value of in the function ?
Let's recall the general form of the quadratic function:
The function given in the problem is:
is the free term (meaning the coefficient of the term with power 0),
In the function in the problem there is no free term,
Therefore, we can identify that:
Therefore, the correct answer is answer A.
Answer:
Solve the following equation:
The parameters are expressed in the quadratic equation as follows:
aX2+bX+c=0
We substitute into the formula:
-5±√(5²-4*1*4)
2
-5±√(25-16)
2
-5±√9
2
-5±3
2
The symbol ± means that we have to solve this part twice, once with a plus and a second time with a minus,
This is how we later get two results.
-5-3 = -8
-8/2 = -4
-5+3 = -2
-2/2 = -1
And thus we find out that X = -1, -4
Answer: