Methods for solving a quadratic function

In this article, we will learn the three most common ways to solve a quadratic function easily and quickly.

  1. Trinomial
  2. Quadratic Formula
  3. Completing the Square

Reminder:

The basic quadratic function equation is:
Y=ax2+bx+cY=ax^2+bx+c

When:
a a   - the coefficient of X2X^2
b b   - the coefficient of XX
cc - the constant term

  • aa must be different from 00
  • bb or cc can be 00
  • a,b,ca,b,c can be negative/positive
  • The quadratic function can also look like this:
    • Y=ax2Y=ax^2
    • Y=ax2+bxY=ax^2+bx
    • Y=ax2+cY=ax^2+c

Practice Solution of quadratic equation

examples with solutions for solution of quadratic equation

Exercise #1

Solve the following equation:

x2+5x+4=0 x^2+5x+4=0

Video Solution

Step-by-Step Solution

The parameters are expressed in the quadratic equation as follows:

aX2+bX+c=0

 

We substitute into the formula:

 

-5±√(5²-4*1*4) 
          2

 

-5±√(25-16)
         2

 

-5±√9
    2

 

-5±3
   2

 

The symbol ± means that we have to solve this part twice, once with a plus and a second time with a minus,

This is how we later get two results.

 

-5-3 = -8
-8/2 = -4

 

-5+3 = -2
-2/2 = -1

 

And thus we find out that X = -1, -4

Answer

x1=1 x_1=-1 x2=4 x_2=-4

Exercise #2

x2+9=0 x^2+9=0

Solve the equation

Video Solution

Step-by-Step Solution

The parameters are expressed in the quadratic equation as follows:

aX2+bX+c=0

 

We identify that we have:
a=1
b=0
c=9

 

We recall the root formula:

Roots formula | The version

We replace according to the formula:

-0 ± √(0²-4*1*9)

           2

 

We will focus on the part inside the square root (also called delta)

√(0-4*1*9)

√(0-36)

√-36

 

It is not possible to take the square root of a negative number.

And so the question has no solution.

Answer

No solution

Exercise #3

6016y+y2=4 60-16y+y^2=-4

Video Solution

Step-by-Step Solution

Let's solve the given equation:

6016y+y2=4 60-16y+y^2=-4 First, let's arrange the equation by moving terms:

6016y+y2=46016y+y2+4=0y216y+64=0 60-16y+y^2=-4 \\ 60-16y+y^2+4=0 \\ y^2-16y+64=0 Now, let's note that we can break down the expression on the left side using the short quadratic factoring formula:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-2\textcolor{red}{a}\textcolor{blue}{b}+\textcolor{blue}{b}^2 This is done using the fact that:

64=82 64=8^2 So let's present the outer term on the right as a square:

y216y+64=0y216y+82=0 y^2-16y+64=0 \\ \downarrow\\ \textcolor{red}{y}^2-16y+\textcolor{blue}{8}^2=0 Now let's examine again the short factoring formula we mentioned earlier:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2 And the expression on the left side of the equation we got in the last step:

y216y+82=0 \textcolor{red}{y}^2-\underline{16y}+\textcolor{blue}{8}^2=0 Let's note that the terms y2,82 \textcolor{red}{y}^2,\hspace{6pt}\textcolor{blue}{8}^2 indeed match the form of the first and third terms in the short multiplication formula (which are highlighted in red and blue),

But in order for us to break down the relevant expression (which is on the left side of the equation) using the short formula we mentioned, the match to the short formula must also apply to the remaining term, meaning the middle term in the expression (underlined):

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2 In other words - we'll ask if it's possible to present the expression on the left side of the equation as:

y216y+82=0?y22y8+82=0 \textcolor{red}{y}^2-\underline{16y}+\textcolor{blue}{8}^2 =0 \\ \updownarrow\text{?}\\ \textcolor{red}{y}^2-\underline{2\cdot\textcolor{red}{y}\cdot\textcolor{blue}{8}}+\textcolor{blue}{8}^2 =0 And indeed it holds that:

2y8=16y 2\cdot y\cdot8=16y So we can present the expression on the left side of the given equation as a difference of two squares:

y22y8+82=0(y8)2=0 \textcolor{red}{y}^2-2\cdot\textcolor{red}{y}\cdot\textcolor{blue}{8}+\textcolor{blue}{8}^2=0 \\ \downarrow\\ (\textcolor{red}{y}-\textcolor{blue}{8})^2=0 From here we can take out square roots for the two sides of the equation (remember that there are two possibilities - positive and negative when taking out square roots), we'll solve it easily by isolating the variable on one side:

(y8)2=0/y8=±0y8=0y=8 (y-8)^2=0\hspace{8pt}\text{/}\sqrt{\hspace{6pt}}\\ y-8=\pm0\\ y-8=0\\ \boxed{y=8}

Let's summarize then the solution of the equation:

6016y+y2=4y216y+64=0y22y8+82=0(y8)2=0y8=0y=8 60-16y+y^2=-4 \\ y^2-16y+64=0 \\ \downarrow\\ \textcolor{red}{y}^2-2\cdot\textcolor{red}{y}\cdot\textcolor{blue}{8}+\textcolor{blue}{8}^2=0 \\ \downarrow\\ (\textcolor{red}{y}-\textcolor{blue}{8})^2=0 \\ \downarrow\\ y-8=0\\ \downarrow\\ \boxed{y=8}

So the correct answer is answer a.

Answer

y=8 y=8

Exercise #4

a = coefficient of x²

b = coefficient of x

c = coefficient of the constant term


What is the value of c c in the function y=x2+25x y=-x^2+25x ?

Video Solution

Answer

c=0 c=0

Exercise #5

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


what is the value of b b in this quadratic equation:

y=4x216 y=4x^2-16

Video Solution

Answer

b=0 b=0

examples with solutions for solution of quadratic equation

Exercise #1

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


what is the value of c c in this quadratic equation:

y=5+3x2 y=5+3x^2

Video Solution

Answer

c=5 c=5

Exercise #2

a = Coefficient of x²

b = Coefficient of x

c = Coefficient of the independent number


what is the value of b b in the equation

y=3x2+10x y=3x^2+10-x

Video Solution

Answer

b=1 b=-1

Exercise #3

a = Coefficient of x²

b = Coefficient of x

c = Coefficient of the independent number


what is the value of a a in the equation

y=3x10+5x2 y=3x-10+5x^2

Video Solution

Answer

a=5 a=5

Exercise #4

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number

what is the value of c c in this quadratic equation:

y=5x2+4x3 y=-5x^2+4x-3

Video Solution

Answer

c=3 c=-3

Exercise #5

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


what is the value of b b in the equation

y=2x3x2+1 y=2x-3x^2+1

Video Solution

Answer

b=2 b=2

examples with solutions for solution of quadratic equation

Exercise #1

a = coefficient of x²

b = coefficient of x

c = coefficient of the independent number


what is the value of a a in the equation

y=x23x+1 y=-x^2-3x+1

Video Solution

Answer

a=1 a=-1

Exercise #2

Solve the following:

x2+5x+4=0 x^2+5x+4=0

Video Solution

Answer

x1=1,x2=4 x_1=-1,x_2=-4

Exercise #3

Solve the following equation:

x2+5x+6=0 x^2+5x+6=0

Video Solution

Answer

x1=3,x2=2 x_1=-3,x_2=-2

Exercise #4

Solve the following equation:

x23x+2=0 x^2-3x+2=0

Video Solution

Answer

x1=1,x2=2 x_1=1,x_2=2

Exercise #5

Solve the following equation:


x2x20=0 x^2-x-20=0

Video Solution

Answer

x1=4,x2=5 x_1=-4,x_2=5