Calculate Trapezoid Area: Shape with Bases 5 and 8 Units, Height 3 Units

Question

Calculate the area of the trapezoid.

555888333

Video Solution

Solution Steps

00:00 Calculate the area of the trapezoid if possible
00:03 We will use the formula for calculating the area of a trapezoid
00:07 (Sum of bases) multiplied by height) divided by 2
00:11 We will substitute appropriate values according to the given data and solve to find the area
00:41 And this is the solution to the question

Step-by-Step Solution

To solve this problem, we'll calculate the area of the trapezoid using the standard formula:

  • Step 1: Identify the given dimensions:
  • Shorter base b1=5 b_1 = 5 .
  • Longer base b2=8 b_2 = 8 .
  • Height h=3 h = 3 .

Step 2: We apply the trapezoid area formula, which is:

A=12×(b1+b2)×h A = \frac{1}{2} \times (b_1 + b_2) \times h .

Step 3: Substitute the given values into the formula:

A=12×(5+8)×3 A = \frac{1}{2} \times (5 + 8) \times 3 .

Step 4: Perform the calculations:

A=12×13×3 A = \frac{1}{2} \times 13 \times 3 .

A=12×39 A = \frac{1}{2} \times 39 .

A=19.5 A = 19.5 or 1912 19 \frac{1}{2} .

The area of the trapezoid is 1912 19 \frac{1}{2} .

Answer

19 1/2