Find the Domain of y=-3x²+4 11/16: Quadratic Function Analysis

Question

Find the positive and negative domains of the following function:

y=3x2+41116 y=-3x^2+4\frac{11}{16}

Step-by-Step Solution

To find the positive and negative domains of the function y=3x2+41116 y = -3x^2 + 4\frac{11}{16} , we need to first find the roots of the equation.

Step 1: Set the function equal to zero to find the roots:

3x2+41116=0 -3x^2 + 4\frac{11}{16} = 0

Simplify the equation:

First, express 41116 4\frac{11}{16} as a fraction:

41116=7516 4\frac{11}{16} = \frac{75}{16}

Substitute into the equation:

3x2+7516=0 -3x^2 + \frac{75}{16} = 0

Multiply through by 16 to clear the fraction:

48x2+75=0 -48x^2 + 75 = 0 48x2=75 48x^2 = 75

Divide both sides by 48:

x2=7548 x^2 = \frac{75}{48}

Simplify the fraction:

x2=2516 x^2 = \frac{25}{16}

Take the square root of both sides:

x=±54 x = \pm \frac{5}{4}

We have two roots: x=54 x = \frac{5}{4} and x=54 x = -\frac{5}{4} .

Step 2: Identify the intervals to test for positivity and negativity.

The critical points create intervals: (,54) (-\infty, -\frac{5}{4}) , (54,54) (-\frac{5}{4}, \frac{5}{4}) , and (54,) (\frac{5}{4}, \infty) .

Step 3: Determine the sign of y y in each interval by testing sample points:

  • For x(,54) x \in (-\infty, -\frac{5}{4}) (e.g., x=2 x = -2 ): y=3(2)2+7516 y = -3(-2)^2 + \frac{75}{16} yields a negative value.
  • For x(54,54) x \in (-\frac{5}{4}, \frac{5}{4}) (e.g., x=0 x = 0 ): y=3(0)2+7516=7516 y = -3(0)^2 + \frac{75}{16} = \frac{75}{16} , which is positive.
  • For x(54,) x \in (\frac{5}{4}, \infty) (e.g., x=2 x = 2 ): y=3(2)2+7516 y = -3(2)^2 + \frac{75}{16} yields a negative value.

Thus, the function is positive for x(54,54) x \in \left(-\frac{5}{4}, \frac{5}{4}\right) and negative for x<54 x < -\frac{5}{4} and x>54 x > \frac{5}{4} .

Therefore, the solution to the problem is:

x > 1\frac{1}{4} or x < 0 : x < -1\frac{1}{4}

x > 0 : -1\frac{1}{4} < x < 1\frac{1}{4}

This matches choice 4.

Answer

x > 1\frac{1}{4} or x < 0 : x < -1\frac{1}{4}

x > 0 : -1\frac{1}{4} < x < 1\frac{1}{4}