Find the Domain of y=-2x²+22⅔: Positive and Negative Analysis

Question

Find the positive and negative domains of the following function:

y=2x2+2229 y=-2x^2+22\frac{2}{9}

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Convert mixed number 2229 22\frac{2}{9} to an improper fraction.
  • Step 2: Use the quadratic formula to find the roots of the function.
  • Step 3: Determine the intervals where y>0 y > 0 and y<0 y < 0 .

Now, let's work through each step:

Step 1: Convert 2229 22\frac{2}{9} to an improper fraction:

2229 22\frac{2}{9} is 2009=2009 \frac{200}{9} = \frac{200}{9} .

Step 2: Use the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} to find the roots.

Here, a=2 a = -2 , b=0 b = 0 , and c=2009 c = \frac{200}{9} .

Calculate the discriminant:

b24ac=04(2)(2009)=16009 b^2 - 4ac = 0 - 4(-2)\left(\frac{200}{9}\right) = \frac{1600}{9} .

The roots become:

x=0±160094=±4034=±103 x = \frac{0 \pm \sqrt{\frac{1600}{9}}}{-4} = \frac{\pm \frac{40}{3}}{-4} = \frac{\pm 10}{3} .

Thus, the roots are x1=103 x_1 = -\frac{10}{3} and x2=103 x_2 = \frac{10}{3} .

Step 3: Examine where the quadratic is positive:

- The function is shaped as a downward-opening parabola. Its positive zone (above x-axis) will be between the roots.

- So, the positive domain is: 103<x<103 -\frac{10}{3} < x < \frac{10}{3} .

- Outside these roots, the function is negative:

- The negative domain corresponds to intervals x<103 x < -\frac{10}{3} or x>103 x > \frac{10}{3} .

Therefore, the solution to the problem is:

x>313 x > 3\frac{1}{3} or x<0:x<313 x < 0 : x < -3\frac{1}{3}

and

x>0:313<x<313 x > 0 : -3\frac{1}{3} < x < 3\frac{1}{3} .

Answer

x > 3\frac{1}{3} or x < 0 : x < -3\frac{1}{3}

x > 0 : -3\frac{1}{3} < x < 3\frac{1}{3}