Domain Analysis: Finding Valid Inputs for y = -x² + 6¼

Question

Find the positive and negative domains of the function:

y=x2+614 y=-x^2+6\frac{1}{4}

Step-by-Step Solution

To find the positive and negative domains of y=x2+614 y = -x^2 + 6\frac{1}{4} , we first rewrite it as y=x2+6.25 y = -x^2 + 6.25 .

Step 1: Solve for the roots of the function:
Set y=0 y = 0 :

0=x2+6.25 0 = -x^2 + 6.25

Rearrange to find x2=6.25 x^2 = 6.25 .

Take the square root: x=±6.25 x = \pm \sqrt{6.25} .

This simplifies to x=±2.5 x = \pm 2.5 .

Step 2: The function y=x2+6.25 y = -x^2 + 6.25 is a downward-opening parabola with vertex at zero leading term, meaning its maximum occurs at x=0 x = 0 .

Step 3: Identify intervals:

  • Interval x<2.5 x < -2.5 : y y is negative (as the parabola is below the x-axis).
  • Interval 2.5<x<2.5 -2.5 < x < 2.5 : y y is positive (as the parabola is above the x-axis).
  • Interval x>2.5 x > 2.5 : y y is negative again (as the parabola curves back down).

The positive domain is 2.5<x<2.5 -2.5 < x < 2.5 . In conventional mathematical form, this can be noted as:

x>0:212<x<212 x > 0 : -2\frac{1}{2} < x < 2\frac{1}{2}

The negative domain occurs when x<2.5 x < -2.5 and x>2.5 x > 2.5 :

x>212 x > 2\frac{1}{2} or x<0:x<212 x < 0 : x < -2\frac{1}{2}

Therefore, the correct answer is Choice 3.

Thus, the positive and negative domains of the quadratic function are:

Positive domain: x>0:212<x<212 x > 0 : -2\frac{1}{2} < x < 2\frac{1}{2}

Negative domain: x>212 x > 2\frac{1}{2} or x<0:x<212 x < 0 : x < -2\frac{1}{2}

Answer

x > 2\frac{1}{2} or x < 0 : x < -2\frac{1}{2}

x > 0 : -2\frac{1}{2} < x < 2\frac{1}{2}