Solve y = (1/2)x² - 12½: Finding Values Where Function is Positive

Question

Given the function:

y=12x21212 y=\frac{1}{2}x^2-12\frac{1}{2}

Determine for which values of X the following holds:

f(x) > 0

Step-by-Step Solution

To solve the problem, let's determine the intervals where the function y=12x212.5 y = \frac{1}{2}x^2 - 12.5 is greater than zero.

  • Step 1: Solve 12x212.5=0 \frac{1}{2}x^2 - 12.5 = 0 .

The equation can be rewritten as:

12x2=12.5 \frac{1}{2}x^2 = 12.5

Multiply both sides by 2 to eliminate the fraction:

x2=25 x^2 = 25

Take the square root of both sides to solve for x x :

x=±5 x = \pm 5
  • Step 2: Analyze the intervals created by the roots x=5 x = -5 and x=5 x = 5 .

The roots divide the number line into three intervals: x<5 x < -5 , 5<x<5 -5 < x < 5 , and x>5 x > 5 .

  • Step 3: Test points within these intervals to check where 12x212.5>0 \frac{1}{2}x^2 - 12.5 > 0 .

- For x<5 x < -5 , pick x=6 x = -6 :

12(6)212.5=1812.5=5.5(>0) \frac{1}{2}(-6)^2 - 12.5 = 18 - 12.5 = 5.5 \, (>0)

- For 5<x<5 -5 < x < 5 , pick x=0 x = 0 :

12(0)212.5=12.5(<0) \frac{1}{2}(0)^2 - 12.5 = -12.5 \, (<0)

- For x>5 x > 5 , pick x=6 x = 6 :

12(6)212.5=1812.5=5.5(>0) \frac{1}{2}(6)^2 - 12.5 = 18 - 12.5 = 5.5 \, (>0)

This analysis shows the function is positive when:

  • x<5 x < -5
  • x>5 x > 5

Thus, the solution is:

x>5 x > 5 or x<5 x < -5

Answer

x > 5 or x < -5