Expand (a+b)(3+a/b): Multiplying Binomial Expressions Step-by-Step

Question

(a+b)(3+ab)=? (a+b)(3+\frac{a}{b})=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll use the distributive property, which states that for any numbers a a , b b , and c c , a(b+c)=ab+ac a(b+c) = ab + ac .

Let's break it down step by step:

Step 1: Apply the distributive property
We will expand the expression (a+b)(3+ab)(a+b)(3+\frac{a}{b}) by distributing the terms in (a+b)(a+b) over (3+ab)(3+\frac{a}{b}).

Step 2: Expand the expression
(a+b)(3+ab)(a+b)(3+\frac{a}{b}) expands as follows:

  • First, distribute aa to each term in (3+ab)(3 + \frac{a}{b}):
    • a3=3aa \cdot 3 = 3a
    • aab=a2ba \cdot \frac{a}{b} = \frac{a^2}{b}
  • Next, distribute bb to each term in (3+ab)(3 + \frac{a}{b}):
    • b3=3bb \cdot 3 = 3b
    • bab=ab \cdot \frac{a}{b} = a (because bb cancels with the denominator)

Step 3: Combine and simplify the results
Putting it all together, we have:

3a+a2b+3b+a3a + \frac{a^2}{b} + 3b + a

Simplify the expression by combining like terms:

  • 3a+a=4a3a + a = 4a

Thus, the simplified result is:

4a+a2b+3b4a + \frac{a^2}{b} + 3b

Therefore, the solution to the problem is 4a+a2b+3b 4a + \frac{a^2}{b} + 3b .

Answer

4a+a2b+3b 4a+\frac{a^2}{b}+3b