Domain Analysis of y=-1/2x²+5: Finding Valid Input Values

Question

Find the positive and negative domains of the function below:

y=12x2+5 y=-\frac{1}{2}x^2+5

Step-by-Step Solution

To solve this problem, we'll start by calculating the roots of the function y=12x2+5 y = -\frac{1}{2}x^2 + 5 .

The quadratic formula is x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} . Here, a=12 a = -\frac{1}{2} , b=0 b = 0 , and c=5 c = 5 .

Substituting these values into the quadratic formula gives:
x=0±024(12)(5)2(12) x = \frac{-0 \pm \sqrt{0^2 - 4(-\frac{1}{2})(5)}}{2(-\frac{1}{2})}
x=±101 x = \frac{\pm \sqrt{10}}{-1}
x=±10 x = \pm \sqrt{10} .

The roots are x=10 x = \sqrt{10} and x=10 x = -\sqrt{10} . These points divide the x-axis into three intervals: (,10) (-\infty, -\sqrt{10}) , (10,10) (-\sqrt{10}, \sqrt{10}) , and (10,) (\sqrt{10}, \infty) .

Given that the parabola opens downwards (since a<0 a < 0 ), the function is positive outside these roots and negative within them.

  • The positive domain is x<10 x < -\sqrt{10} or x>10 x > \sqrt{10} .
  • The negative domain is 10<x<10 -\sqrt{10} < x < \sqrt{10} .

Therefore, the positive domain is -\sqrt{10} < x < \sqrt{10}. The negative domain is x > \sqrt{10} or x < -\sqrt{10}.

This corresponds to choice 1:

x > 0 : -\sqrt{10} < x < \sqrt{10}

x > \sqrt{10} or x < 0 : x < -\sqrt{10}

Answer

x > 0 : -\sqrt{10} < x < \sqrt{10}

x > \sqrt{10} or x < 0 : x < -\sqrt{10}