Finding Positive Values in the Quadratic Function: y = 1/3x² + 2.33x

Question

Look at the following function:

y=13x2+213x y=\frac{1}{3}x^2+2\frac{1}{3}x

Determine for which values of x x the following is true:

f\left(x\right) > 0

Step-by-Step Solution

The function given is y=13x2+73x y = \frac{1}{3}x^2 + \frac{7}{3}x . Our goal is to determine when this function is greater than 0.

Firstly, we set the function equal to 0 to find the critical points:

13x2+73x=0\frac{1}{3}x^2 + \frac{7}{3}x = 0

Factor out 13x\frac{1}{3}x from the equation:

13x(x+7)=0\frac{1}{3}x(x + 7) = 0

This gives us two roots: x=0x = 0 and x=7x = -7.

Now, consider the intervals determined by these roots: x<7x < -7, 7<x<0-7 < x < 0, and x>0x > 0. Analyze the sign of y y in each interval by selecting test points.

  • Interval x<7x < -7: Choose x=8x = -8. Substituting into the function gives 13(8)2+73(8)=643563=83>0 \frac{1}{3}(-8)^2 + \frac{7}{3}(-8) = \frac{64}{3} - \frac{56}{3} = \frac{8}{3} > 0
  • Interval 7<x<0-7 < x < 0: Choose x=1x = -1. Substituting into the function gives 13(1)2+73(1)=1373=63=2<0 \frac{1}{3}(-1)^2 + \frac{7}{3}(-1) = \frac{1}{3} - \frac{7}{3} = -\frac{6}{3} = -2 < 0
  • Interval x>0x > 0: Choose x=1x = 1. Substituting into the function gives 13(1)2+73(1)=13+73=83>0 \frac{1}{3}(1)^2 + \frac{7}{3}(1) = \frac{1}{3} + \frac{7}{3} = \frac{8}{3} > 0

From this analysis, the function y y is positive when x<7 x < -7 or x>0 x > 0 . Thus, the solution is:

The function f(x) f(x) is positive for x>0 x > 0 or x<7 x < -7 .

Answer

x > 0 or x < -7