Solve y = 1/4x² - 3.5x: Finding Negative Function Values

Question

Look at the following function:

y=14x2312x y=\frac{1}{4}x^2-3\frac{1}{2}x

Determine for which values of x x the following is true:

f(x) < 0

Step-by-Step Solution

To determine when f(x)=14x2312x<0 f(x) = \frac{1}{4}x^2 - 3\frac{1}{2}x < 0 , follow these steps:

Step 1: Find the roots of the quadratic equation.

The function can be rewritten as y=14x272x y = \frac{1}{4}x^2 - \frac{7}{2}x . Set this equal to zero to find the roots:

14x272x=0 \frac{1}{4}x^2 - \frac{7}{2}x = 0

Factor out x x : x(14x72)=0 x\left(\frac{1}{4}x - \frac{7}{2}\right) = 0

So, x=0 x = 0 or 14x=72 \frac{1}{4}x = \frac{7}{2} . Solve the second equation:

x=72×4=14 x = \frac{7}{2} \times 4 = 14

Step 2: Analyze the intervals around the roots.

The roots are x=0 x = 0 and x=14 x = 14 . These divide the number line into three intervals: x<0 x < 0 , 0<x<14 0 < x < 14 , and x>14 x > 14 .

Step 3: Perform a sign test in each interval.

  • Test for x<0 x < 0 : Choose x=1 x = -1 . The value of the function f(1)=14(1)272(1)=14+72>0 f(-1) = \frac{1}{4}(-1)^2 - \frac{7}{2}(-1) = \frac{1}{4} + \frac{7}{2} > 0 .
  • Test for 0<x<14 0 < x < 14 : Choose x=7 x = 7 . The value of the function f(7)=14(7)272(7)=494492=494984=494<0 f(7) = \frac{1}{4}(7)^2 - \frac{7}{2}(7) = \frac{49}{4} - \frac{49}{2} = \frac{49}{4} - \frac{98}{4} = -\frac{49}{4} < 0 .
  • Test for x>14 x > 14 : Choose x=15 x = 15 . The value of the function f(15)=14(15)272(15)=22541052=22542104=154>0 f(15) = \frac{1}{4}(15)^2 - \frac{7}{2}(15) = \frac{225}{4} - \frac{105}{2} = \frac{225}{4} - \frac{210}{4} = \frac{15}{4} > 0 .

Conclusion: The quadratic 14x272x \frac{1}{4}x^2 - \frac{7}{2}x is less than zero for 0<x<14 0 < x < 14 .

Therefore, the solution to the problem is 0<x<14 0 < x < 14 .

Answer

0 < x < 14