Simplify the Expression: a·b·a·b·a² Using Exponent Rules

ababa2 a\cdot b\cdot a\cdot b\cdot a^2

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

ababa2 a\cdot b\cdot a\cdot b\cdot a^2

2

Step-by-step solution

We use the power property to multiply terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} It is important to note that this property is only valid for terms with identical bases,

We return to the problem

We notice that in the problem there are two types of terms with different bases. First, for the sake of order, we will use the substitution property of multiplication to rearrange the expression so that the two terms with the same base are grouped together. Then, we will proceed to work:

ababa2=aaa2bb a\cdot b\operatorname{\cdot}a\operatorname{\cdot}b\operatorname{\cdot}a^2=a\cdot a\cdot a^2\cdot b\cdot b Next, we apply the power property for each type of term separately,

aaa2bb=a1+1+2b1+1=a4b2 a\cdot a\cdot a^2\cdot b\cdot b=a^{1+1+2}\cdot b^{1+1}=a^4\cdot b^2

We apply the power property separately - for the terms whose bases area a and then for the terms whose bases areb b and we add the exponents and simplify the terms.

Therefore, the correct answer is option c.

Note:

We use the fact that:

a=a1 a=a^1 and the same for b b .

3

Final Answer

a4b2 a^4\cdot b^2

Practice Quiz

Test your knowledge with interactive questions

\( 112^0=\text{?} \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Exponents Rules questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations