Solve (2x-16)² > 0: Finding Values Where Function is Positive

Look at the function below:

y=(2x16)2 y=\left(2x-16\right)^2

Then determine for which values of x x the following is true:

f(x)>0 f(x) > 0

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Look at the function below:

y=(2x16)2 y=\left(2x-16\right)^2

Then determine for which values of x x the following is true:

f(x)>0 f(x) > 0

2

Step-by-step solution

To determine when the function y=(2x16)2 y = (2x - 16)^2 is greater than zero, we observe the following:

  • The function's expression, (2x16)2(2x - 16)^2, is a square and thus always non-negative (0 \geq 0 ).
  • The expression will equate to zero when the inside term is zero: 2x16=02x - 16 = 0.
  • Solve the equation 2x16=02x - 16 = 0 to find x=8x = 8.
  • Therefore, (2x16)2=0(2x - 16)^2 = 0 only at x=8x = 8.
  • For y>0 y > 0 , (2x16)2(2x - 16)^2 must be greater than zero, which occurs for all x x except x=8 x = 8.

The solution is x8 x \ne 8 , which means y y is positive for all x x except x=8 x = 8 .

3

Final Answer

x8 x\ne8

Practice Quiz

Test your knowledge with interactive questions

The graph of the function below intersects the X-axis at points A and B.

The vertex of the parabola is marked at point C.

Find all values of \( x \) where \( f\left(x\right) > 0 \).

AAABBBCCCX

🌟 Unlock Your Math Potential

Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations