Look at the following function:
Determine for which values of the following is true:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Look at the following function:
Determine for which values of the following is true:
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: Find the roots of the function:
The function is zero when either or .
Solving these equations:
Step 2: Analyze the intervals determined by the roots. The roots divide the number line into three intervals: , , and .
Step 3: Determine the sign of in each interval:
Therefore, the solution occurs when the product is positive, i.e., for values .
Thus, the intervals for which is .
The graph of the function below intersects the X-axis at points A and B.
The vertex of the parabola is marked at point C.
Find all values of \( x \) where \( f\left(x\right) > 0 \).
Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime